La détection des ombres de nuages, comment ça marche ?

=>

Les ombres des nuages sont sombres, et ont été causées par la présence d’un nuage.

A l’exception de ces deux faits, on ne dispose pas de beaucoup d’informations pour détecter une ombre, et pour cette raison, les ombres sont encore plus difficiles à détecter que les nuages. Les ombres ne sont pas les seuls objets sombres, et les ombres de nuages peuvent être confondues avec des parcelles de sols nus humides, avec des étendues d’eau, ou avec des ombres projetées par le relief.

Ici encore, l’observation multi-temporelle peut aider à la détection, puis qu’il y aura moins de confusions si on détecte un assombrissement brutal de l’image. Cependant, l’effet d’une pluie ou d’une irrigation sur un sol nu peut-être similaire à l’effet d’une ombre de nuages.

Pour être sûr que les pixels détectés comme une ombre sont bien des ombres, il est donc bien utile de vérifier si l’on trouve le nuage qui les auraient créées.

Dans notre chaîne de traitement, nous procédons de la manière suivante :

  1. Détection des nuages
  2. Calcul de la différence entre l’image à traiter, et une image de référence acquise précédemment, dans la bande rouge
  3. Recherche de l’altitude des nuages. Pour une altitude allant de 500 à 10000m :
    • calcul de la position éventuelle des ombres.
    • calcul de l’assombrissement moyen observé pour cette position à partir de l’image différence calculée lors de l’étape 2.
  4. Recherche de l’altitude pour laquelle l’assombrissement est maximal
  5. Calcul du masque d’ombres à partir du masque de nuages projeté pour l’altitude calculée lors de l’étape 4

Malheureusement, il se peut que des nuages situés en dehors de l’image projettent leurs ombres dans l’image. Ces ombres là ne seront pas détectées par la méthode ci-dessus. Si l’on tient compte du fait que les nuages peuvent atteindre 5 à 10 kilomètres d’altitude, et qu’en hiver, l’élévation solaire peut être faible, la surface concernée par ce problème peut être assez étendue. Sur ce plan là, les meilleures images sont les plus grandes, et c’est Sentinel-2 avec 300 km de largeur, qui remportera la palme. Cependant, leur découpage en tuiles de 110*110 km réduit cet avantage.

Plus d'actualités

Evolution de l’altitude de la ligne de neige au cours des 41 dernières années dans le bassin versant du Vénéon (Oisans)

Pour contribuer à caractériser les conditions hydrométéorologiques lors de la crue torrentielle qui a frappé la Bérarde en juin, j’ai analysé une nouvelle série de cartes d’enneigement qui couvre la période 1984-2024 [1]. Grâce à la profondeur temporelle de cette série, on constate que l’altitude de la ligne de neige dans le bassin versant du […]

Biophysical parameter retrieval from Sentinel-2 images using physics-driven deep learning for PROSAIL inversion

The results presented here are based on published work: Y. Zérah, S. Valero, and J. Inglada. « Physics-constrained deep learning for biophysical parameter retrieval from sentinel-2 images: Inversion of the prosail model« , in Remote Sensing of Environment, doi: 10.1016/j.rse.2024.114309. This work is part of the PhD of Yoël Zérah, supervised by Jordi Inglada and Silvia Valero. […]

Nouvel article : peu d’apport des images Sentinel-1 pour le suivi du dépérissement des chênes et châtaigniers

Dans le cadre du projet SuFoSat mené au CESBIO, une collaboration entre trois laboratoires (CESBIO, Dynafor et P2PE) a permis d’évaluer l’apport des images Sentinel-1 pour la détection précoce du dépérissement sur deux essences de feuillus : les chênes et les châtaigniers sur une vaste zone (12 tuiles Sentinel-2, voir Figure 1). Des classifications ont été […]

Rechercher