Feedback on Sentinel-2A first image

Sentinel-2A first image

=> 

Several colleagues asked me about the apparent defect on the maritime part of Sentinel-2 first image.  I would like to reassure you, it is not a defect, only a directional effect. Let’s explain it :- For each Sentinel-2 spectral band, 30 000 elementary detectors are necessary to obtain a field of view of 300km with a resolution of 10m. But the current technology does not allow to provide 30000 detectors in a row. Sentinel-2 uses 12 arrays of detectors, which are put together to cover the whole field of view. But as each linear array is surrounded by an edge, it is not possible to stitch the pieces together with no space between the linear arrays. It was decided to shift the 10 pieces within the focal plane, as in the drawing below. The odd chips are looking forward, and the even chips are looking backward, with angle differences that may reach 3 degrees for some bands.

Sentinel-2 VNIR focal plane

 

On Sentinel-2A first image, we observe the see surface with the specular reflection of the sun on the sea surface (also called sunglint).  Such a phenomenon tends to change quickly as a function of the viewing angle, as may be seen on the picture below. Bertrand Fougnie, at CNES, computed the amplitude of this effect as a function of the detector, for different wind speeds. It is provided on the plot below, on which you can see the line breaks between the odd and even detectors. The plot is provided for different wind speeds. When the wind is low, the sunglint makes a small spot with a large variation with angle, which increases the effect. The « defect » we observe is therefore only linked to a difference of observation angle. This phenomenon is not at all visible above lands, because there, the directional effects are much lower except in some special cases (the « hot spot »), which should be avoided by Sentinel-2.. A few concerned users asked if that would prevent the use of data above ocean, but I do not think so. If one is able to remove the sunglint effect on the data, then one is able to account for the angle variations.

Plus d'actualités

BIOMASS, the third launched satellite mission designed at CESBIO !

After SMOS in 2009, and VENµS in 2017, the CESBIO Laboratory is very proud to see its third proposed mission, Biomass, reach orbit. As always, it has been a long journey from the idea, at the beginning of the century, to the selection in 2013 as the seventh Earth Explorer Mission by ESA, to the […]

Sentinel-2 reveals the surface deformation after the 2025 Myanmar earthquake

Sentinel-2 captured several clear-sky images of Myanmar before and after the 28 March 2025 earthquake. The animation below shows a 5-day apart sequence of images captured by Sentinel-2B and Sentinel-2C (10 m resolution) near the epicenter located close to Mandalay. The surface slip due to the earthquake follows the Sagaing Fault, a major fault in […]

Evolution de l’altitude de la ligne de neige au cours des 41 dernières années dans le bassin versant du Vénéon (Oisans)

Pour contribuer à caractériser les conditions hydrométéorologiques lors de la crue torrentielle qui a frappé la Bérarde en juin, j’ai analysé une nouvelle série de cartes d’enneigement qui couvre la période 1984-2024 [1]. Grâce à la profondeur temporelle de cette série, on constate que l’altitude de la ligne de neige dans le bassin versant du […]

Rechercher