L1C registration performances for SPOT4(Take5) V1 products

Now that all SPOT4(Take5) images have been processed (pfew !), we can make an appraisal of the performances. Let’s start by the geometry, which caused us a lot of trouble :

  • SPOT4 has a location accuracy around 400 mètres, but during the experiment, it went through a fifteen day period when the location errors could reach 1500 m.
  • We seek a multi-temporal registration performance of 0.3 pixel RMS. This performance is difficult to measure because the measurement technique itself (correlation image matching) is not perfectly accurate.
  • We provide as a criterion the maximum registration error observed for the 50% best results or for the 80% best results. It is likely that the last criterion includes less inaccurate measurements.

 Here are the observed performances for 3 very different sites :

  • CMaroc site, which is an arid site with a green period in march, a lot of blue sky, and high mountains (the Atlas). performances are excellent, with errors lower than 0.3 pixels for 50% of the measurementsl.

 

  • CBretagneLoireE site, which is a rather flat coastal area with large tides, and is often very cloudy. In that case, performances are still better than 0.5 pixels. The worse dates correspond to images with a large cloud cover, for which it is not easy to automatically collect accurate ground control points.

 

  • JSumatra site is a very flat area, covered with very uniform equatorial forest, and a large river whose limits change with time. In that case, the performance is really bad, with registration errors up to 10 pixels. This uniform site does not enable to find good control points, and the ones that are found are often along the river whose contour changes with the water level.

 

Conclusions

We have obtained very good results for most sites, with registration errors below 0.5 pixels (10m) even when the initial location error reaches 1500m. However, 4 sites are resisting to this processing. These 4 sites correspond to flat forest sites covered by equatorial forest : JSumatra, JBorneo, EGabon, ECongo. The ECongo site is even so uniform that it is not possible to measure its registration performance.These sites will be distributed with the others in a few days with the first version of the products, but you should use them cautiously.Finally, if the registration of 95% of images is good, the location performance is inherited from our reference images, ie LANDSAT (5 et 7). The next versions will be based on Geosud (IGN) images in France and on LANDSAT 8 data elsewhere. Performances should be enhanced in the next versions.

Plus d'actualités

BIOMASS, the third launched satellite mission designed at CESBIO !

After SMOS in 2009, and VENµS in 2017, the CESBIO Laboratory is very proud to see its third proposed mission, Biomass, reach orbit. As always, it has been a long journey from the idea, at the beginning of the century, to the selection in 2013 as the seventh Earth Explorer Mission by ESA, to the […]

Biophysical parameter retrieval from Sentinel-2 images using physics-driven deep learning for PROSAIL inversion

The results presented here are based on published work: Y. Zérah, S. Valero, and J. Inglada. « Physics-constrained deep learning for biophysical parameter retrieval from sentinel-2 images: Inversion of the prosail model« , in Remote Sensing of Environment, doi: 10.1016/j.rse.2024.114309. This work is part of the PhD of Yoël Zérah, supervised by Jordi Inglada and Silvia Valero. […]

Copernicus should keep S2A operational after S2C launch

The launch of Sentinel-2C (S2C) is scheduled on the 4th of September 2024, next week ! After 3 months of commissioning phase, S2C will replace S2A, to fulfill the Sentinel-2 mission together with S2B. S2B will later be replaced by S2D. The current plans are to keep S2A as a redundant satellite, in case something […]

Rechercher