High spatial and temporal resolution optical remote sensing data to estimate maize biomass and yield

=>

Climate variability has a strong impact on maize yield. For example, the strong drought that occurred in 2016 led to lower yields across France, even for irrigated fields. Yield estimates have a significant strategic and economic importance. High spatial and temporal resolution remote sensing data are a valuable tool for providing yield estimates at a large scale.

 

In a recent study (Battude et al. 2016) based on optical image time series (combination of Formosat-2, Landsat-8, SPOT4-Take5 and Deimos-1, about two images per month), CESBIO researchers have developed a new method for the estimation of maize yield. A new formulation of SAFY agro-meteorological model taking into account of the observed seasonal variation of the specific leaf area (SLA) and the effective light use efficiency (ELUE) was proposed.

 

Results show that these modifications improve biomass estimates at local scale. 

Comparison of measured and simulated Dry Aboveground Mass (DAM) with the original version of SAFY (left) and the new model version (right)

Yield estimates are compared to annual statistical values (Agreste) on two departments in the southwest of France : the Gers and the Haute-Garonne. Results show that the model reproduces well yields (R = 0.96; RRMSE = 4.6%), even if it sometimes overestimates the values for rainfed fields. 

Comparison of simulated yield and Agreste values [t.ha-1] for the Gers and Haute-Garonne departments in 2013 (left) and 2014 (right), with the distinction between irrigated and rainfed fields. Standard errors associated to simulated values are reported.

GAI thus seems to be a good indicator for estimating the irrigated maize yield at regional scale. For rainfed fields, coupling SAFY with a water balance module simulating the soil water content  may improve yield estimates. Sentinel-2 mission offers new perspectives and its data should improve the model estimates. Reference : Battude M., Al Bitar A., Morin D., Cros J., Huc M., Marais Sicre C., Le Dantec V., Demarez V. (2016) Estimating maize biomass and yield over large area using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sensing of Environment 184, 668-681 DOI: 10.1016/j.rse.2016.07.030

Plus d'actualités

Sentinel-2 overtakes Landsat in scientific litterature

The OpenAlex is a new but already very convenient open database to survey scientific litterature. For a coming blog post on CNES Datacampus site, I studied the proportion of papers using only one of the Sentinel-2 or Landsat missions, and papers using both of them, in 2025. And what stroke me is that Sentinel-2 just […]

Everything, Everywhere, All at Once

This blog post is not a review of the excellent and deeply philosophical, parallel-universes delirium movie by Daniel Kwan and Daniel Scheinert, but the title of this drama resonates with the capabilities of our latest algorithm, which has just been published in Remote Sensing of Environment: J. Michel and J. Inglada, « Temporal attention multi-resolution fusion […]

Three Sentinel-2 satellites instead of two: impact on the retrieval of the snow disappearance date

Due to the success of Olivier’s petition, ESA kept Sentinel-2A operational after the launch of Sentinel-2C. Having three operational satellites instead of two increases the revisit, which should improve the quality of the derived products, and therefore the reliability of operational services based on Sentinel-2 data. One of this service is the Copernicus’ High Resolution […]

Rechercher