How to estimate Aerosol Optical Thickness

=>

Caution ! This post contains formulas !

Aerosols play a great role in the atmospheric effects. Aerosols are particles suspended in the atmosphere, which can be of several types: sand or dust, soot from combustion, sulfates or sea salt, surrounded by water… Their size ranges between 0.1 micron and a few microns, depending on the type of aerosol or on the air moisture. Their quantity is also extremely variable : rain can suddenly reduce their abundance (known as « aerosol optical thickness »). The abundance variations result in great variations of observable reflectances from one day to the next, and it is therefore necessary to know the quantity and type of aerosols, in order to correct their effects.

 

Unfortunately, to correct the effects of aerosols, there is no global aerosol observation network, and the only available data are local observations from the few hundred points of Aeronet network. Therefore, this network can not be used operationally to correct the satellite images over large areas.

Weather forecast models just start predicting the amounts of aerosols, based on satellite observations and modeling of sources and sinks and of the transport of aerosols by the winds, but these data do not seem to have sufficient accuracy yet to be used for the atmospheric correction of images.

 

Our atmospheric correction method, named MACCS, is therefore based on an estimate of aerosol optical depth from the images themselves. To understand how this method works, one must already understand the effects of aerosols on radiation. We have seen in this post, that the effects of diffusion can be modelled as follows (assuming the corrected gas absorption):

ρTOA = ρatm +Td ρsurf

The reflectance at the top of the atmosphere ρTOA (Top of Atmosphere) is the sum of the atmospheric reflectance  ρatm and of the surface reflectance ρsurf transmitted by the atmosphere. We seek to know the surface reflectance, but for each measurement made at the top of the atmosphere, there are three unknowns to be determined. To separate the effects of the atmosphere and surface effects, we must use other information.

 

Dark pixel method

When the image includes a surface whose surface reflectance is nearly zero, the reflectance observed at the top of the atmosphere becomes ρTOA = ρatm. We can therefore deduce the atmospheric reflectance and using a radiative transfer model, the aerosols optical thickness (AOT). Finally, knowing the AOT, we can compute the diffuse transmission, and finally calculate ρsurf. An even simpler and more approximate version of this method consists in subtracting directly the reflectance of the dark pixel (or ρatm) to the entire image (neglecting the transmission) [Chavez, 1988].

 

However, this method assumes that there is a very dark area in the image (which is not always the case), and that the reflectance of the dark surface is known. The method also assumes that the amount of aerosols is constant over the image and it neglects the effect of terrain. The results obtained by this method can be quite inaccurate. In our method (MACCS), however, we use the method of black pixel determine the maximum value of the optical thickness in the area.

 

Multi Spectral Method, called « DDV »

If you know the type of aerosols in the atmosphere, it is possible to deduce the properties of aerosols in a spectral band from the optical properties in another spectral band.

 

If there are two spectral bands, there are two measures ρsurf and three unknowns (both surface reflectance in these bands, and the amount of aerosols). An additional equation can be obtained if we know the relationship between the surface reflectance of the two bands.

 

The method named « Dark Dense Vegetation » (DDV) is based on assumptions about relationships between surface reflectances of the dense vegetation exploiting the fact that the spectrum of dense green vegetation is quite constant. The most famous version of this method is that used by NASA for MODIS project [Remer 2005]. It connects the surface reflectance in the blue and red with those in the SWIR. This provides two equations for estimating the type of aerosol optical thickness. This method works well in temperate and boreal zones, but not in arid areas where it is difficult to find the dense vegetation. Early versions used the following equations:

 

ρBlue = 0.5 ∗ ρSWIR

ρRed = 0.25 ∗ ρSWIR

 

The following versions of the MODIS DDV algorithm are a bit more complicated but follow the same principle. Our work has shown that using the equation below allows a more accurate determination of the optical thickness, for less dense vegetation cover (NDVI to a 0.2) because bare soil brown also respect this relationship.

 

ρBlue = 0.5 * ρRed

(the exact value of the coefficient is adjusted according to the spectral bands of the instrument)This version of the  method, however, does not allow to determine the aerosol model. In the case of SPOT4 (Take5), the absence of a blue band does not allow us to use this equation, resulting in a slight loss in accuracy.

 

  

Multi Temporal Method

In most cases, the reflectance of the land surface changes slowly over time, while the aerosol optical properties vary rapidly from one day to another. We can therefore consider what changes from one image to another (apart from special cas
es often linked to human intervention) is associated with aerosols, and deduce the properties of aerosols and then correct for atmospheric effects. This method is too complex to be explained in detail here, interested readers can refer to [Hagolle 2008].

 

So that surface reflectance be nearly constant from one image to another, however, it is required that images be acquired at a constant angle. Indeed, the reflectance depend on the viewing angles: this is what we call directional effects. This method therefore applies only to satellite observations obtained with constant angle. It does not apply to standard SPOT data, but this condition is true for SPOT4 (Take5) data. It also applies to Landsat Venμs and Sentinel-2.

 

Finally :

 

The MACCS/MAJA method, used for SPOT4 (Take5) experiment, and also for LANDSAT, VENμS and Sentinel-2 data, combines the three methods described above to obtain robust estimates of aerosol optical thickness. These methods work in many cases, but sometimes fail when the assumptions on which they are based prove to be incorrect. They generally tend to work better on vegetated areas rather than in arid areas. for now, they assume the model known aerosol and in the coming years, we will look for reliable ways to identify the type of aerosols.

 

References :
Chavez Jr, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459-479.

Remer, L. A., and Coauthors, 2005: The modis aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.Hagolle, O and co-authors, 2008. « Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images ». Remote sensing of environment 112 (4)Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images. Remote Sens. 2015, 7, 2668-2691.

Les aérosols jouent un rôle prépondérant dans les effets atmosphériques. Les aérosols sont des particules en suspension dans l’atmosphère, qui peuvent être de plusieurs types : grains de sable ou poussières, suies issues de combustion, sulfates ou sels marins entourés d’eau… Leur taille peut varier de 0.1 µm à quelques microns, en fonction du type d’aérosols ou de l’humidité de l’air. Quant à leur quantité, elle est extrêmement variable, une pluie pouvant réduire brutalement leur abondance (on parle d' »épaisseur optique d’aérosols »). Ils peuvent faire varier fortement d’un jour à l’autre les réflectances observables depuis le sommet de l’atmosphère et il est donc nécessaire de connaître leur quantité et leur type afin de pouvoir corriger leurs effets.

 

Malheureusement, pour corriger les effets des aérosols, on ne dispose pas de réseau global d’observation des aérosols, seulement d’observations locales, sur les quelques centaines de points du réseau Aeronet. Ce réseau ne peut donc pas être utilisé pour corriger opérationnellement les images de satellites sur de grandes étendues.Des modèles météorologiques commencent à prédire les quantités d’aérosols, en se basant sur les observations de satellites et la modélisation des sources et du transport des aérosols par les vents, mais ces données ne semblent pas encore avoir une précision suffisante pour être utilisées pour la correction atmosphérique des images.

 

Notre méthode de correction atmosphérique (MACCS) repose donc sur une estimation de l’épaisseur optique des aérosols à partir des images elles-mêmes. Pour bien comprendre le fonctionnement de cette méthode, il faut déjà comprendre les effets des aérosols sur le rayonnement. On a vu, dans ce billet, que les effets de la diffusion peuvent être modélisés ainsi (on suppose l’absorption gazeuse corrigée) :

ρTOA = ρatm +Td ρsurf

La réflectance au sommet de l’atmosphère ρTOA (Top of Atmosphere) est la somme de la réflectance atmosphérique ρatm et de la réflectance de surface ρsurf transmise par l’atmosphère. On cherche à connaître la réflectance de surface, mais à chaque mesure réalisée au sommet de l’atmosphère, on a trois inconnues à déterminer. Pour séparer les effets de l’atmosphère et les effets de la surface, il faut donc utiliser d’autres informations.

 

Méthode du pixel noir

Lorsque l’image contient une surface dont la réflectance est quasi nulle, la réflectance observée au sommet de l’atmosphère devient ρTOA= ρatm. On peut donc en déduire la réflectance atmosphérique, et en utilisant un modèle de transfert radiatif, l’épaisseur optique des d’aérosols. On peut enfin en déduire la transmission diffuse, et finalement calculer ρsurf. Une version encore plus simple et plus approximative consiste à soustraire directement la réflectance du pixel sombre (soit ρatm) à toute l’image. [Chavez, 1988]

 

Cependant, cette méthode revient à supposer qu’il existe bien une surface très sombre dans l’image (ce qui n’est pas toujours le cas), et que la réflectance de cette surface sombre est connue. La méthode suppose aussi que la quantité d’aérosols est constante dans l’im
age et elle néglige les effets du relief. Les résultats obtenus par cette méthode peuvent donc être assez imprécis. Dans notre méthode (MACCS), nous utilisons cependant la méthode du pixel noir déterminer la valeur maximale de l’épaisseur optique dans la zone.

 

Méthode Multi Spectrale, dite « DDV »

Si on connaît le type d’aérosols présent dans l’atmosphère, il est possible de déduire les  propriétés des aérosols dans une bande spectrale, à partir des propriétés optiques dans une autre bande spectrale.

 

Si on dispose de deux bandes spectrales, on dispose de deux mesures ρsurf et de trois inconnues( les deux réflectances de surface dans ces bandes, et la quantité d’aérosols). Une équation supplémentaire peut être obtenue si on connaît la relation entre les réflectances de surface des deux bandes.

 

La méthode  méthode « Dark Dense Vegetation » (DDV ) est basée sur des hypothèses de relations entre réflectances de surface sur la végétation dense exploitant le fait que le spectre de la végétation dense et verte est un peu toujours le même. La version la plus connue de cette méthode est celle utilisée par la NASA pour le projet MODIS [Remer 2005]. Elle relie les réflectances de surface dans le bleu et dans le rouge avec celles dans le moyen infra-rouge. On dispose ainsi de deux équations qui permettent d’estimer le type d’aérosols et l’épaisseur optique. Cette méthode fonctionne bien en zones tempérées et boréales, mais pas en zones arides, où il est difficile de trouver de la végétation dense. Les premières versions utilisaient les équations suivante

ρBleu = 0.5 ∗ ρSWIR

ρRouge = 0.25 ∗ ρSWIR

Les versions suivantes ont un peu compliqué ces équations, sans en modifier le principe. Nos travaux ont montré que l’utilisation de l’équation ci dessous  (la valeur exacte du coefficient est à ajuster en fonction des bandes spectrales de l’instrument):

ρBleu = 0.5 ∗ ρRouge

permet une détermination plus précise de l’épaisseur optique, pour des couverts végétaux moins denses (jusqu’à un NDVI de 0.2), car les sols nus de couleur marron respectent aussi cette relation. La méthode ne permet pas, par contre, de déterminer le modèle d’aérosols. Dans le cas de SPOT4 (Take5) l’absence d’une bande bleue ne nous permet pas d’utiliser cette dernière équation, d’où une légère perte en précision.

 

Méthode Multi Temporelle

On observe dans la plupart des cas que les réflectances de la surface terrestre évoluent lentement avec le temps, alors que le propriétés optiques des aérosols varient très rapidement, d’un jour à l’autre. On peut donc considérer que ce qui change d’une image à l’autre (en dehors de cas particuliers souvent liées à des interventions humaines) est lié aux aérosols, et donc en déduire les propriétés des aérosols pour ensuite corriger les effets atmosphériques. Cette méthode est un peu trop complexe pour être expliquée en détails ici, les lecteurs intéressés pourront se reporter à [Hagolle 2008].

 

Pour que les réflectances de surface soient quasi constantes d’une image à l’autre, il faut cependant que les images soient acquises sous un angle de vue constant. Les changements d’angles d’observation font en effet varier les réflectances (ce phénomène sera prochainement expliqué dans un autre article). Cette méthode ne s’applique donc qu’aux seuls satellites permettant des observations à angle constant.  Elle ne s’applique donc pas aux données SPOT normales mais par contre convient parfaitement aux données SPOT4 (Take5). Elle s’appliquera aussi à Landsat, Venµs et Sentinel-2.

En résumé :

 

Notre méthode MACCS, utilisée pour l’expérience SPOT4 (Take5), et pour les données LANDSAT, VENµS et Sentinel-2, combine les trois méthodes présentées ci-dessus pour obtenir des estimations robustes des épaisseurs optiques d’aérosols. Ces méthodes fonctionnent dans un grand nombre de cas, mais peuvent parfois échouer quand les hypothèses sur lesquelles elles reposent s’avèrent fausses. Elles ont en général tendance à mieux fonctionner sur des zones couvertes de végétation plutôt que dans des zones arides. pour le moment, elles supposent le modèle d’aérosol connu, et dans les prochaines années, nous chercherons des manières fiables d’identifier le type d’aérosols.

 

References :
Chavez Jr, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459-479.

Remer, L. A., and Coauthors, 2005: The modis aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.Hagolle, O and co-authors, 2008. « Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images ». Remote sensing of environment 112 (4)

Plus d'actualités

BIOMASS, the third launched satellite mission designed at CESBIO !

After SMOS in 2009, and VENµS in 2017, the CESBIO Laboratory is very proud to see its third proposed mission, Biomass, reach orbit. As always, it has been a long journey from the idea, at the beginning of the century, to the selection in 2013 as the seventh Earth Explorer Mission by ESA, to the […]

Sentinel-2 reveals the surface deformation after the 2025 Myanmar earthquake

Sentinel-2 captured several clear-sky images of Myanmar before and after the 28 March 2025 earthquake. The animation below shows a 5-day apart sequence of images captured by Sentinel-2B and Sentinel-2C (10 m resolution) near the epicenter located close to Mandalay. The surface slip due to the earthquake follows the Sagaing Fault, a major fault in […]

Evolution de l’altitude de la ligne de neige au cours des 41 dernières années dans le bassin versant du Vénéon (Oisans)

Pour contribuer à caractériser les conditions hydrométéorologiques lors de la crue torrentielle qui a frappé la Bérarde en juin, j’ai analysé une nouvelle série de cartes d’enneigement qui couvre la période 1984-2024 [1]. Grâce à la profondeur temporelle de cette série, on constate que l’altitude de la ligne de neige dans le bassin versant du […]

Rechercher