SPOT4(Take5) : Cloud statistics after one month

=> We have now received all the L1A images of the SPOT4(Take5) experiment taken between January the 31st and March the 10th, for which at least some part of the surface is visible. We ortho-rectify these images to obtain level 1C products, but sometimes, the cloud cover is still too high to process the image. We can use all these productions to derive some statistics about cloud cover. 

InstitutionImages acquiredL1A processedL1C processed% L1A% L1C
CNES32418415756 %49 %
JRC54292753 %50 %
ESA84413449 %40 %
NASA48262654%54%
CCRS61117 %17 %

 Between 40% and 50% of the images taken are sufficiently clear so that the ortho-rectification is feasible. When the production of all cloud masks (level2A) is finished, we will be able to compute the number of cloud free observations for each pixel.After having looked at all the images in Europe or North Africa, we can confirm that all the pixels of these sites have been observed at least once without clouds, except for 3 sites : CAlsace, EBelgium and CTunisia (!). For the site in Alsace, we had to wait until the 4th of March, and until the 10th of March for the site in Tunisia. And up to now, only a little part of the site in Belgium has been observed, on the 8th of March. 

Site Clouds < 10% 10% < Clouds < 50% 50% < Clouds < 80% 80% < Clouds
Alpes2022
Alsace0006
Ardèche1104
Loire1032
Bretagne1014
Languedoc0222
Provence2310
SudmipyO1113
SudmipyE1113
VersaillesE2013

In France, despite a very cloudy month of February, the 5 days repetitivity enabled to observe nearly each site at least once. But if SPOT4 had only imaged one out of two overpasses, only the sites in Versailles, Provence and the Alps would have been observed in any case. This result confirms that it is absolutely necessary to launch both Sentinel-2 satellites with a short time interval, so enable the numerous operational applications that need to rely on a monthly clear observation. And it would be a pity if the recent GMES/Copernicus budget cuts resulted in delaying the Sentinel-2B satellite, reducing the repetitivity to only 10 days for several long years.

Plus d'actualités

BIOMASS, the third launched satellite mission designed at CESBIO !

After SMOS in 2009, and VENµS in 2017, the CESBIO Laboratory is very proud to see its third proposed mission, Biomass, reach orbit. As always, it has been a long journey from the idea, at the beginning of the century, to the selection in 2013 as the seventh Earth Explorer Mission by ESA, to the […]

Sentinel-2 reveals the surface deformation after the 2025 Myanmar earthquake

Sentinel-2 captured several clear-sky images of Myanmar before and after the 28 March 2025 earthquake. The animation below shows a 5-day apart sequence of images captured by Sentinel-2B and Sentinel-2C (10 m resolution) near the epicenter located close to Mandalay. The surface slip due to the earthquake follows the Sagaing Fault, a major fault in […]

Evolution de l’altitude de la ligne de neige au cours des 41 dernières années dans le bassin versant du Vénéon (Oisans)

Pour contribuer à caractériser les conditions hydrométéorologiques lors de la crue torrentielle qui a frappé la Bérarde en juin, j’ai analysé une nouvelle série de cartes d’enneigement qui couvre la période 1984-2024 [1]. Grâce à la profondeur temporelle de cette série, on constate que l’altitude de la ligne de neige dans le bassin versant du […]

Rechercher