Satellite detection by satellite

=>  Airplanes largely disrupt our remote sensing images, because of the ice contrails they leave behind them, which often turn into cloud cover. We had to set up a method for detecting and correcting aircraft contrails.

LANDSAT 8 image acquired over Paris on 14/04/2013. On the left, RGB color composition, on the right, image of the 1.38μm band. Given the number of traces of planes,  we might have to choose between flying or observing the earth.

But a new nuisance is appearing: the satellites themselves. More than 4000 satellites orbit around the earth, and with the nanosatellites mode, launches of space objects have multiplied. 450 new objects appeared last year, more than 500 are expected in 2019. As most of these satellites are launched in low orbit, between 400 and 600 km altitude, they orbit between our favorite observation satellites and the Earth.

 And the future is quite worrying (generally speaking, the future is more worrying than the past): according to my colleague from CNES, Christophe Bonnal: « The US company One Web has the ambition to deploy 600 satellites within three years three to offer broadband internet access from space. Several companies have similar projects in drawers : Boeing has announced the sending of 2400 satellites, Samsung sits at 4000, while Elon Musk speaks bluntly of 12,000 spacecrafts « . 

The 12,000 satellites in the Starlink constellation would be located at 3 different altitudes (340 km, 550 km and 1,200 km). Two of these altitudes will therefore be visible from the Sentinel-2 orbit. And already, the company Planet has about 200 satellites at an altitude of 400 km.

 Given the large number of satellites, I wondered if it was possible that the images of Sentinel-2 were disturbed by the presence of satellites located a little lower. The possibility is quite high, because finally, most optical observation satellites seek to make their observations around 10:30 in the morning. With a good orbit propagator, and thanks to Norad’s data, it’s pretty easy to find the moments when one of the Sentinel-2 passes over one of the Planet satellites just below. And with that information, accurate to a few tenths of meters, we can search for the satellite in the image 

Here are three examples of results obtained, two on very recent images, and one older. Although the planet satellites are quite small, their metal surface reflects the sun well and therefore leaves a visible mark on Sentinel-2 images.

 

Sentinel-2 image from March 28th, over China. The satellite can be seen within the red circle. See the zoom on the image on the right. The bright point, just right of the image center is satellite Planet Flock 1C-11,
 Sentinel-2 image from March 27th, over Spain. The satellite can be seen within the red circle. See the zoom on the image on the right. The bright point, just right of the image center is satellite Planet Flock 3R-8. On both images, my computation predicted it would be in the image center. There must be a bias.
This interesting case was observed just after Flock 3P launch with PSLV on the 12 the of January 2018. Three satellites, whose obits a re still quite close, can be seen just left of the image center. (Sentinel-2 image observed over New Caledonia, on 13th Janury 2018.) Artist view of Flock 3P launch from PSLV on January 12th.

 Well, the phenomenon is still modest, thanks to the small size and low orbit of Planet satellites, but if large constellations are launched at an altitude closer to that of Sentinel-2, they can cover many pixels.Will we have to resort to the technique recently developed by the indian government to
  avoid multiplying white spots on our images ? And of course, this text was published on the first of April, and the « satellites » shown in the images are just white spots, probably not satellites, but who knows 🙂 

Plus d'actualités

Dates de fauche en France

En 2024, des collègues du Cesbio ont publié un article* sur la cartographie de la date de fauche en France en 2022 à partir des données satellitaires Sentinel-2.   Leur magnifique figure 10 a attiré mon attention. La version à haute résolution fournie avec l’article (2861 × 2911 pixels) correspond à une image dont les pixels font […]

Évolution du jour de déneigement dans les Alpes françaises et les Pyrénées

Les socio-écosystèmes des Alpes et des Pyrénées dépendent étroitement des fluctuations annuelles du manteau neigeux. En particulier, le moment de l’année où la neige disparait détermine le début de la saison de croissance de la végétation de montagne et donc la période des estives. Le changement climatique est en train de bouleverser ce rythme saisonnier. […]

BIOMASS, the third launched satellite mission designed at CESBIO !

After SMOS in 2009, and VENµS in 2017, the CESBIO laboratory is very proud to see its third proposed mission, Biomass, reach orbit. As always, it has been a long journey from the idea, at the beginning of the century, to the selection in 2013 as the seventh Earth Explorer Mission by ESA, to the […]

Rechercher