Les coefficients SMAC pour la correction atmosphérique de Sentinel-2A sont disponibles

=>Les coefficients SMAC pour la correction atmosphérique des images Sentinel-2A ont été calculés et ajoutés à la collection du CESBIO. Cette fois, les coefficients ont été calculés par le service Physique de la Mesure Optique du CNES. Si vous les utilisez, n’oubliez donc pas de remercier le CNES et le CESBIO. Comme je l’ai dit dans un ancien article :

Le Simplifié Modèle d’Atmosphérique Correction (SMAC) est parfaitement adapté à l’implémentation rapide et moyennement précise de corrections atmosphériques. Il utilise des fonctions analytiques dérivées du modèle 5S. Les 49 coefficients de ce modèle sont ajustés à partir de simulations de transfert radiatif obtenues avec le modèle 6S (l’ancienne version, pas la récente version vectorielle). SMAC n’est pas un modèle très précis (beaucoup moins que MACCS), et il faut lui fournir des données auxiliaires pour l’épaisseur optique des aérosols ou pour les contenus atmosphériques en ozone et vapeur d’eau. Quand ces données sont précisément connues, la précision des simulations est en général meilleure que deux à trois pour cent, sauf parfois pour les grands angles (au dessus de 70°) ou dans de fortes bandes d’absorption et si on ne prend pas en compte les effets d’environnement et les effets de pente.

 Nous mettons aussi à disposition un code en python qui utilise ces coefficients. Ce code est décrit et distribué ici.

References

[1] Rahman, H., & Dedieu, G. (1994). SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. REMOTE SENSING, 15(1), 123-143.« [2] »Tanré, D., Deroo, C., Duhaut, P., Herman, M., Morcrette, J. J., Perbos, J., & Deschamps, P. Y. (1990). Technical note Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code. International Journal of Remote Sensing, 11(4), 659-668.« [3] »Vermote, E. F., Tanré, D., Deuze, J. L., Herman, M., & Morcette, J. J. (1997). Second simulation of the satellite signal in the solar spectrum, 6S: An overview. Geoscience and Remote Sensing, IEEE Transactions on, 35(3), 675-686.>« [4] »Kotchenova, S. Y., Vermote, E. F., Matarrese, R., & Klemm Jr, F. J. (2006). Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Applied Optics, 45(26), 6762-6774.« [5] »Kotchenova, S. Y., & Vermote, E. F. (2007). Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. Applied Optics, 46(20), 4455-4464.

Plus d'actualités

Dates de fauche en France

En 2024, des collègues du Cesbio ont publié un article* sur la cartographie de la date de fauche en France en 2022 à partir des données satellitaires Sentinel-2.   Leur magnifique figure 10 a attiré mon attention. La version à haute résolution fournie avec l’article (2861 × 2911 pixels) correspond à une image dont les pixels font […]

Évolution du jour de déneigement dans les Alpes françaises et les Pyrénées

Les socio-écosystèmes des Alpes et des Pyrénées dépendent étroitement des fluctuations annuelles du manteau neigeux. En particulier, le moment de l’année où la neige disparait détermine le début de la saison de croissance de la végétation de montagne et donc la période des estives. Le changement climatique est en train de bouleverser ce rythme saisonnier. […]

Sentinel-2 reveals the surface deformation after the 2025 Myanmar earthquake

Sentinel-2 captured several clear-sky images of Myanmar before and after the 28 March 2025 earthquake. The animation below shows a 5-day apart sequence of images captured by Sentinel-2B and Sentinel-2C (10 m resolution) near the epicenter located close to Mandalay. The surface slip due to the earthquake follows the Sagaing Fault, a major fault in […]

Rechercher