How to make a mosaic of Theia snow products in three command lines

Assuming that you have downloaded from Theia and unzipped several products in the same directory. Assuming that you have a Linux OS with GNU Parallel, GDAL and OTB command line utilities installed..

 

  

Then, in your terminal, type:

# Get the color table
wget https://gitlab.orfeo-toolbox.org/remote_modules/let-it-snow/-/raw/75-lis-color-table-for-otb-not-updated-after-changed-nodata/hpc/LIS_SEB_style_OTB.txt
# reproject all SNW raster products to a common system (here Web Mercator) and assign 255 to nodata
parallel gdalwarp -srcnodata 255 -overwrite -r near -t_srs "EPSG:3857" {} {/} ::: $(ls SEN*/*SNW*.tif)
# Apply color table
parallel otbcli_ColorMapping -in {} -out c{} uint8 -method.custom.lut LIS_SEB_style_OTB.txt ::: $(ls S*SNW*.tif)
# Merge colored images and set 0 to nodata
gdal_merge.py -n 0 c*tif -o mosaic.tif -co COMPRESS=DEFLATE

This is yesterday’s snow cover map of the entire French Alps (10 December 2020). Snow is cyan, clouds are white.

Plus d'actualités

BIOMASS, the third launched satellite mission designed at CESBIO !

After SMOS in 2009, and VENµS in 2017, the CESBIO Laboratory is very proud to see its third proposed mission, Biomass, reach orbit. As always, it has been a long journey from the idea, at the beginning of the century, to the selection in 2013 as the seventh Earth Explorer Mission by ESA, to the […]

Evolution de l’altitude de la ligne de neige au cours des 41 dernières années dans le bassin versant du Vénéon (Oisans)

Pour contribuer à caractériser les conditions hydrométéorologiques lors de la crue torrentielle qui a frappé la Bérarde en juin, j’ai analysé une nouvelle série de cartes d’enneigement qui couvre la période 1984-2024 [1]. Grâce à la profondeur temporelle de cette série, on constate que l’altitude de la ligne de neige dans le bassin versant du […]

Biophysical parameter retrieval from Sentinel-2 images using physics-driven deep learning for PROSAIL inversion

The results presented here are based on published work: Y. Zérah, S. Valero, and J. Inglada. « Physics-constrained deep learning for biophysical parameter retrieval from sentinel-2 images: Inversion of the prosail model« , in Remote Sensing of Environment, doi: 10.1016/j.rse.2024.114309. This work is part of the PhD of Yoël Zérah, supervised by Jordi Inglada and Silvia Valero. […]

Rechercher