New satellites added to SMAC atmospheric correction

=> New coefficients have been added to the CESBIO repository for SMAC coefficients. The new sensors taken into account are :

  • Landsat 8, RapidEye
  • Quickbird, Worldview2, Ikonos
  • Pléiades1A (PHR1A)
  • DMC-DEIMOS1

 The Simplified Model for Atmospheric Correction (SMAC) is the perfect model to perform easy, quick and not too dirty atmospheric corrections. It is based on very simple analytic formulas, based on the 5S model. The 49 coefficients of this model are fitted using a large number of radiative transfer simulations with the 6S model (the old historic version, not the recent vector version). This software is not very accurate (much less than MACCS), and it requires in-situ measurements for the aerosol optical thickness, and weather analyses for ozone and water vapour. If these data are available,  in most cases, its accuracy is within 2 and 3 percent, if we do not account for adjacency effects and slope effects, and it may be worse for large viewing and solar angles (above 70°) or within strong absorption bands. SMAC is very easy to use:

#read the 49 coefficients in smac_soefs tablenom_smac ='COEFS/coef_FORMOSAT2_B1_CONT.dat'coefs=coeff(nom_smac)#read the TOA reflectance image in r_toa variable#depends on the file format#read the angle values in the image metadatatheta_s=30phi_s=180theta_v=0phi_v=0# compute pressure at pixel altitudepressure=PdeZ(1300)#find the values of AOT, UO3, UH2OAOT550=0.1UO3=0.3UH2O=3#compute the atmospheric correctionr_surf=smac_inv(r_toa,theta_s,phi_s,theta_v,phi_v,pressure,AOT,UO3,UH2O,coefs)

where :

  • theta_s, phi_s are the solar zenith and azimuth angles
  • theta_v, phi_v are the viewing zenith and azimuth angles
  • AOT is the aerosol optical thickness at 550 nm which may be obtained from an Aeronet stations, or guessed, or equal to 0.1 for a really dirty atmospheric correction.
  • UO3 is the ozone content in cm.atm (0.3 is OK)
  • UH2O is the water vapour integrated content in kg/m². When I do quick and dirty atmospheric correction, I often use a value equal to 3, but I do not process spectral bands with strong water vapour absorption bands.
References

[1] Rahman, H., & Dedieu, G. (1994). SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. REMOTE SENSING, 15(1), 123-143.« [2] »Tanré, D., Deroo, C., Duhaut, P., Herman, M., Morcrette, J. J., Perbos, J., & Deschamps, P. Y. (1990). Technical note Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code. International Journal of Remote Sensing, 11(4), 659-668.« [3] »Vermote, E. F., Tanré, D., Deuze, J. L., Herman, M., & Morcette, J. J. (1997). Second simulation of the satellite signal in the solar spectrum, 6S: An overview. Geoscience and Remote Sensing, IEEE Transactions on, 35(3), 675-686.>« [4] »Kotchenova, S. Y., Vermote, E. F., Matarrese, R., & Klemm Jr, F. J. (2006). Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Applied Optics, 45(26), 6762-6774.« [5] »Kotchenova, S. Y., & Vermote, E. F. (2007). Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. Applied Optics, 46(20), 4455-4464. 

Plus d'actualités

BIOMASS, the third launched satellite mission designed at CESBIO !

After SMOS in 2009, and VENµS in 2017, the CESBIO Laboratory is very proud to see its third proposed mission, Biomass, reach orbit. As always, it has been a long journey from the idea, at the beginning of the century, to the selection in 2013 as the seventh Earth Explorer Mission by ESA, to the […]

Evolution de l’altitude de la ligne de neige au cours des 41 dernières années dans le bassin versant du Vénéon (Oisans)

Pour contribuer à caractériser les conditions hydrométéorologiques lors de la crue torrentielle qui a frappé la Bérarde en juin, j’ai analysé une nouvelle série de cartes d’enneigement qui couvre la période 1984-2024 [1]. Grâce à la profondeur temporelle de cette série, on constate que l’altitude de la ligne de neige dans le bassin versant du […]

Biophysical parameter retrieval from Sentinel-2 images using physics-driven deep learning for PROSAIL inversion

The results presented here are based on published work: Y. Zérah, S. Valero, and J. Inglada. « Physics-constrained deep learning for biophysical parameter retrieval from sentinel-2 images: Inversion of the prosail model« , in Remote Sensing of Environment, doi: 10.1016/j.rse.2024.114309. This work is part of the PhD of Yoël Zérah, supervised by Jordi Inglada and Silvia Valero. […]

Rechercher