L’ortho-rectification, comment ça marche ?

=>L’ « ortho-rectification » est une correction géométrique des images qui a pour but de les présenter comme si elles avaient été acquises depuis la verticale (en télédétection, on dit « au nadir »). En pratique, il s’agit de rendre l’image acquise par le satellite superposable à une carte.Nous disposons de beaucoup d’informations pour réaliser cette opération :

  • on sait où il se trouve au moment de la prise de vue
  • on sait comment il est orienté
  • on sait comment l’instrument est orienté dans le satellite.

Sur les satellites récents (Pleiades), la précision de ces informations permet de positionner les pixels à mieux que 10 mètres près. Ce n’est pas le cas pour SPOT4, dont l’écart-type de la précision de localisation est de l’ordre de 400 mètres.

Image SPOT4 de niveau 1A en géométrie brute (en Angola) Image de Niveau 1C, ortho-rectifiée

 Dans le cas de SPOT4, il faut donc « recaler les images », en utilisant des points d’appuis. Prendre un point d’appui consiste à lier un pixel de l’image à un point sur la carte. On peut créer des points d’appuis manuellement en identifiant, par exemple, un même croisement de routes sur la carte et sur l’image. On peut aussi heureusement le faire automatiquement en utilisant une technique appelée « corrélation automatique » que je ne décrirai pas ici. Pour cela, on utilise une image de référence bien localisée et un bon modèle numérique de terrain (une carte du relief). La méthode que nous utilisons est la suivante :

  1. A partir de l’image de référence et des informations fournies par le satellite (les « données auxiliaires »), on simule l’image observée par SPOT4,
  2. on utilise la corrélation automatique (il existe d’autres méthodes) pour observer les décalages entre l’image simulée et l’image réelle.
  3. On en déduit une correction des données auxiliaires pour supprimer les décalages
  4. On peut donc trouver pour chaque point de la carte son correspondant dans l’image
  5. Il ne reste plus qu’à créer la carte par interpolation.

 Dans nos chaînes, toutes ces opérations sont réalisées à partir d’un logiciel du CNES appelé SIGMA. Ce logiciel n’est pas distribué, mais des fonctions équivalentes existent dans l’OTB (Cf ci-dessous) Pour l’expérience Take5, sur les sites situés en France, nous utilisons une image de référence réalisée par le projet GEOSUD (composante du PTSC), sur la France entière, obtenue à partir de données des satellites RapidEye. Le travail géométrique de correction de ces données RapidEye a été réalisé par l’IGN, les performances de localisation sont très bonnes. Hors de France, nous ne disposons pas d’une telle référence, et nous avons décidé d’utiliser des données issues des satellites LANDSAT, dont la qualité de positionnement est honorable quoique d’un niveau inférieur à celui de GEOSUD (de l’ordre de 30 mètres), mais qui sont disponibles sur le monde entier. Mais nous ne pouvons pas nous permettre de rechercher, pays par pays les meilleures cartographies disponibles. Cette opération demande une dizaine de minutes par image sur nos machines. Pour en savoir plus :


  • Baillarin, S., P. Gigord, et O. Hagolle. 2008. « Automatic Registration of Optical Images, a Stake for Future Missions: Application to Ortho-Rectification, Time Series and Mosaic Products ». In Geoscience and Remote Sensing Symposium, 2008, 2:II‑1112‑II‑1115. doi:10.1109/IGARSS.2008.4779194.

Plus d'actualités

Nouvel article : peu d’apport des images Sentinel-1 pour le suivi du dépérissement des chênes et châtaigniers

Dans le cadre du projet SuFoSat mené au CESBIO, une collaboration entre trois laboratoires (CESBIO, Dynafor et P2PE) a permis d’évaluer l’apport des images Sentinel-1 pour la détection précoce du dépérissement sur deux essences de feuillus : les chênes et les châtaigniers sur une vaste zone (12 tuiles Sentinel-2, voir Figure 1). Des classifications ont été […]

Copernicus should keep S2A operational after S2C launch

The launch of Sentinel-2C (S2C) is scheduled on the 4th of September 2024, next week ! After 3 months of commissioning phase, S2C will replace S2A, to fulfill the Sentinel-2 mission together with S2B. S2B will later be replaced by S2D. The current plans are to keep S2A as a redundant satellite, in case something […]

Premiers MNT LiDAR HD

L’IGN communique actuellement sur la mise à disposition des premiers MNT dérivés des nuages de points LiDAR HD. A mon avis, cet exemple est mal choisi puisqu’un MNT de la citadelle de Gravelines de qualité équivalente  était déjà disponible dans le RGE ALTI® 1m en libre accès depuis le 1er janvier 2021. Sur ce secteur […]

Rechercher