A new version of the SPOT4(Take5) products is available.

=> The CNES teams of the THEIA Land Data Center have reprocessed the SPOT4 (Take5) data, in order to take into account a large number of images that were not processed in the first place, because some data had not been yet received or because their processing had failed due to a few little bugs. The same processors and parameters were used and the only difference is the increased number of available dates, but as the L2A methods are multi-temporal and recurrent, when we add an image, the results on the subsequent images are also changed. It is thus advisable that you download again all the products of the sites you are interested in, from the following address : http://spirit.cnes.fr/take5 On this prototype ground segment, our management of product versions is basic, and only takes the processors into account. As the processors are unchanged, the new version 1.1 products are still identified as level 1.0 products in the Metadata. We are sorry for this inconvenience, you will need to pay attention not to mix them with the older version. 

Plus d'actualités

Évolution du jour de déneigement dans les Alpes françaises et les Pyrénées

Les socio-écosystèmes des Alpes et des Pyrénées dépendent étroitement des fluctuations annuelles du manteau neigeux. En particulier, le moment de l’année où la neige disparait détermine le début de la saison de croissance de la végétation de montagne et donc la période des estives. Le changement climatique est en train de bouleverser ce rythme saisonnier. […]

BIOMASS, the third launched satellite mission designed at CESBIO !

After SMOS in 2009, and VENµS in 2017, the CESBIO laboratory is very proud to see its third proposed mission, Biomass, reach orbit. As always, it has been a long journey from the idea, at the beginning of the century, to the selection in 2013 as the seventh Earth Explorer Mission by ESA, to the […]

Biophysical parameter retrieval from Sentinel-2 images using physics-driven deep learning for PROSAIL inversion

The results presented here are based on published work: Y. Zérah, S. Valero, and J. Inglada. « Physics-constrained deep learning for biophysical parameter retrieval from sentinel-2 images: Inversion of the prosail model« , in Remote Sensing of Environment, doi: 10.1016/j.rse.2024.114309. This work is part of the PhD of Yoël Zérah, supervised by Jordi Inglada and Silvia Valero. […]

Rechercher