The Khumbu Icefall by Venµs

This is a time-lapse of all clear-sky images captured by Venµs over the Khumbu Icefall near Mount Everest since November 2017 (one year of data, 51 images at 5 m resolution)

.Khumbu Icefall by Venµs

Here I used the Level-1C products (i.e. without atmospheric correction) because the Level-2A products are provided at a lower resolution (10 m). Anyway, the atmosphere is rather thin in this area..To make this animation (without the date annotation to simplify):

1) download

python ./theia_download.py -l 'Nepal' -c VENUS -a config_theia.cfg -d 2017-11-01 -f 2018-12-01 --level 'LEVEL1C'

2) unzip

mkdir -p ../VENUS

parallel unzip -d ../VENUS ::: $(find . -name "VENUS*zip")

3) export as natural color pictures

cd ../VENUS

mkdir -p VIS

parallel gdal_translate -srcwin 4118 3132 1058 770 -of JPEG -b 7 -b 4 -b 3 -scale 0 800 0 255 -ot byte {} VIS/{/.}.jpg ::: $(find . -name VE*[0-9].DBL.TIF)

4) animate with imagemagick

convert -delay 10 VIS/*jpg anim.gif


And using QGIS2threeJS we can fly above the image (here 16 July 2017)..

 

Continued: Khumbu icefall in 4D…

Plus d'actualités

BIOMASS, the third launched satellite mission designed at CESBIO !

After SMOS in 2009, and VENµS in 2017, the CESBIO Laboratory is very proud to see its third proposed mission, Biomass, reach orbit. As always, it has been a long journey from the idea, at the beginning of the century, to the selection in 2013 as the seventh Earth Explorer Mission by ESA, to the […]

Evolution de l’altitude de la ligne de neige au cours des 41 dernières années dans le bassin versant du Vénéon (Oisans)

Pour contribuer à caractériser les conditions hydrométéorologiques lors de la crue torrentielle qui a frappé la Bérarde en juin, j’ai analysé une nouvelle série de cartes d’enneigement qui couvre la période 1984-2024 [1]. Grâce à la profondeur temporelle de cette série, on constate que l’altitude de la ligne de neige dans le bassin versant du […]

Biophysical parameter retrieval from Sentinel-2 images using physics-driven deep learning for PROSAIL inversion

The results presented here are based on published work: Y. Zérah, S. Valero, and J. Inglada. « Physics-constrained deep learning for biophysical parameter retrieval from sentinel-2 images: Inversion of the prosail model« , in Remote Sensing of Environment, doi: 10.1016/j.rse.2024.114309. This work is part of the PhD of Yoël Zérah, supervised by Jordi Inglada and Silvia Valero. […]

Rechercher