A brand new MAJA ATBD

I have always wanted to provide an Algorithm Theoretical Basis Document related to MAJA, but never had time, because I always had more urgent things to do. Some papers had been published, allowing MAJA users to get a good idea or the methods we use, but the published articles did not cover all the features of MAJA.

But this time, due to a contractual engagement with ESA, it was the urgent thing to do. So, at last, after a few weeks of hard work, here it is. If you have already read the papers from our team, you will recognize some text published quite a long time ago, but we updated all the text and added some parts which had not been explained yet in journal publications, and of course the new parts recently added to MAJA. This ATBD is now in line with version 2.0 of MAJA.

The ATBD can be cited with the following reference :

Olivier Hagolle, Mireille Huc, Camille Descardins, Stefan Auer, Rudolf Richter, MAJA Algorithm Theoretical Basis Document, https://doi.org/10.5281/zenodo.1209633 DOI

Plus d'actualités

Rapid analysis of the GLOF in Gupis, Gilgit-Baltistan

Pakistan news media reported that a glacier lake outburst flood (the failure of a dam containing a glacial lake) occurred near Gupis, Gilgit-Baltistan, a highly mountainous region administered by Pakistan. Satellite images show that the flood triggered a debris flow, which reached the Gupis valley where it hit the Roshan (Rashon) village and blocked the […]

BIOMASS, the third launched satellite mission designed at CESBIO !

After SMOS in 2009, and VENµS in 2017, the CESBIO laboratory is very proud to see its third proposed mission, Biomass, reach orbit. As always, it has been a long journey from the idea, at the beginning of the century, to the selection in 2013 as the seventh Earth Explorer Mission by ESA, to the […]

Biophysical parameter retrieval from Sentinel-2 images using physics-driven deep learning for PROSAIL inversion

The results presented here are based on published work: Y. Zérah, S. Valero, and J. Inglada. « Physics-constrained deep learning for biophysical parameter retrieval from sentinel-2 images: Inversion of the prosail model« , in Remote Sensing of Environment, doi: 10.1016/j.rse.2024.114309. This work is part of the PhD of Yoël Zérah, supervised by Jordi Inglada and Silvia Valero. […]

Rechercher