

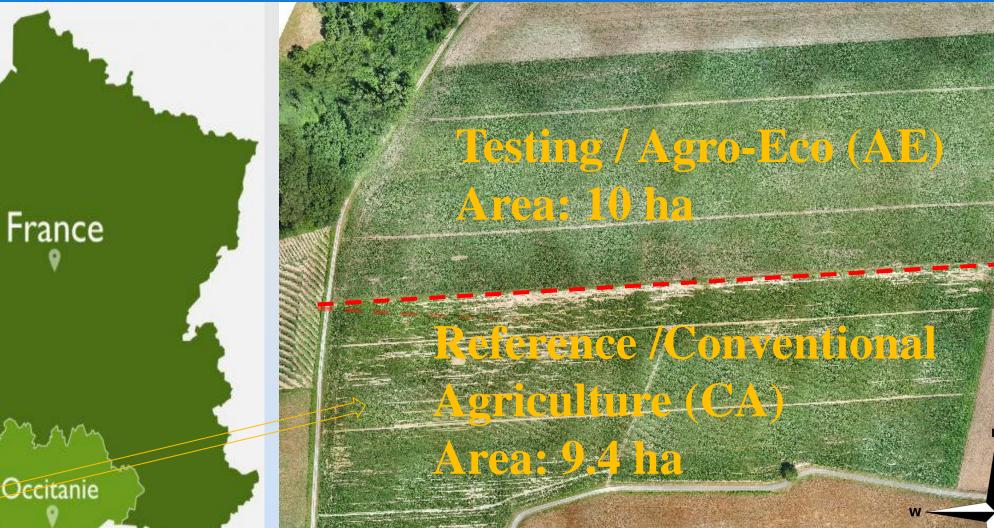
RAQRS, Valencia, September 2022, Land surface radiation and inversion modelling

Using UAV & S2 reflectance and vegetation index for calibrating realistic 3D models of maize fields with DART and simulating their radiative budget

P. Boitard^(1,2), B. Coudert⁽¹⁾, N. Lauret⁽¹⁾, JP. Gastellu-Etchegorry⁽¹⁾

(1) CESBIO UMR 5126, 18 av. E Belin, 31401 Toulouse, France (2) Université Paul Sabatier - Toulouse 3, Site d'Auch, France

paul.boitard@cesbio.cnes.fr


Abstract

How does the type of maize cultivation (agro-ecological and conventional) influence the Radiative Budget of plants (RB_{plant}) and ground (RB_{ground}), especially in the APAR (Absorbed Photosynthetically Active Radiation) domain?

We assess this influence with the 3D radiative budget of the DART model for 2 maize fields each with specific type of cultivation, 3D architecture and optical properties. The LAI of the fields was not accurately defined by the SNAP code applied to Sentinel 2 (S2). Therefore, we derived from a new method that uses DART, and UAV ($\Delta r=11$ cm) or S2 ($\Delta r=10$ m) images.

Our study highlights:

- The conventional field has a larger APAR_{around} than the agro-eco field with its crop residues
- The agro-eco field has a larger albedo than the conventional field
- The plant architectures of the two fields (interplant and inter-rows) greatly influence RB_{plant}

Université

Midi-Pyrénées

Fédérale

Toulouse

Occitanie

Occitanie

Southwest, France (43°41'N; 0°28'E) Climate: temperate climate, 1110 mm of cumulative precipitation in 2019, average July temperature > 22 ° C.

Two types of cultivation with same plant density per hectare (90 000 pl/ha):

- Agro-ecology (no-till, intermediate crops, crop residue,...)

- Conventional

This site (Estampes, Gers) participates to the TRISHNA CAL/VAL, and is part of the **CESBIO's Regional Space Observatory**

(guide-du-gers.com) (RGB UAV image 11/07/2019)

Data and method used

Ser (courtes)	y ESA)			0/07/201	9.11h
Sr	Spatial	Satelite S		Sensor	
	resolution	Wavelength	Bandwidth		TI (S
		492.1 nm	98 nm		al
	10 m	559 nm	46 nm	MSI	lt
		665 nm	39 nm		C
		833 nm	133 nm		U

,11h				
(SNAI all Se	Sentinel P) is a co ntinel Toc develop	mmon a olboxes.	archited	ture for
	ult, Skywa	•		

Our work is a continuation of the BAG'AGES project (2016-2021, Adour-Garonne Water Agency) to study agro-ecology (no-till,

residues,..), water balance and local determinants (morphology, hydrology, soil properties ...), and also to evaluate the effects

• In situ data: 4 radiative fluxes (short and long waves, upward and downward), images of a TIR camera at 7m height, soil / plant

optical properties (OP_{soil}, OP_{plant}) from ASD spectroradiometer, T[°]& RH micro-sensors (ibuttons inside canopy and soil surface)

• Remote sensing images at 1 day interval: 2019/07/10 at 11am for Sentinel 2 (S2) and 2019/07/11 at 2pm for UAV (VIS NIR,

(sensefly.com)		
(50		1/07/2019,
Spatial	UAV	Ebee
resolution	Wavelength	Bandwidth

550 nm

660 nm

735 nm

790 nm

≈11 cm

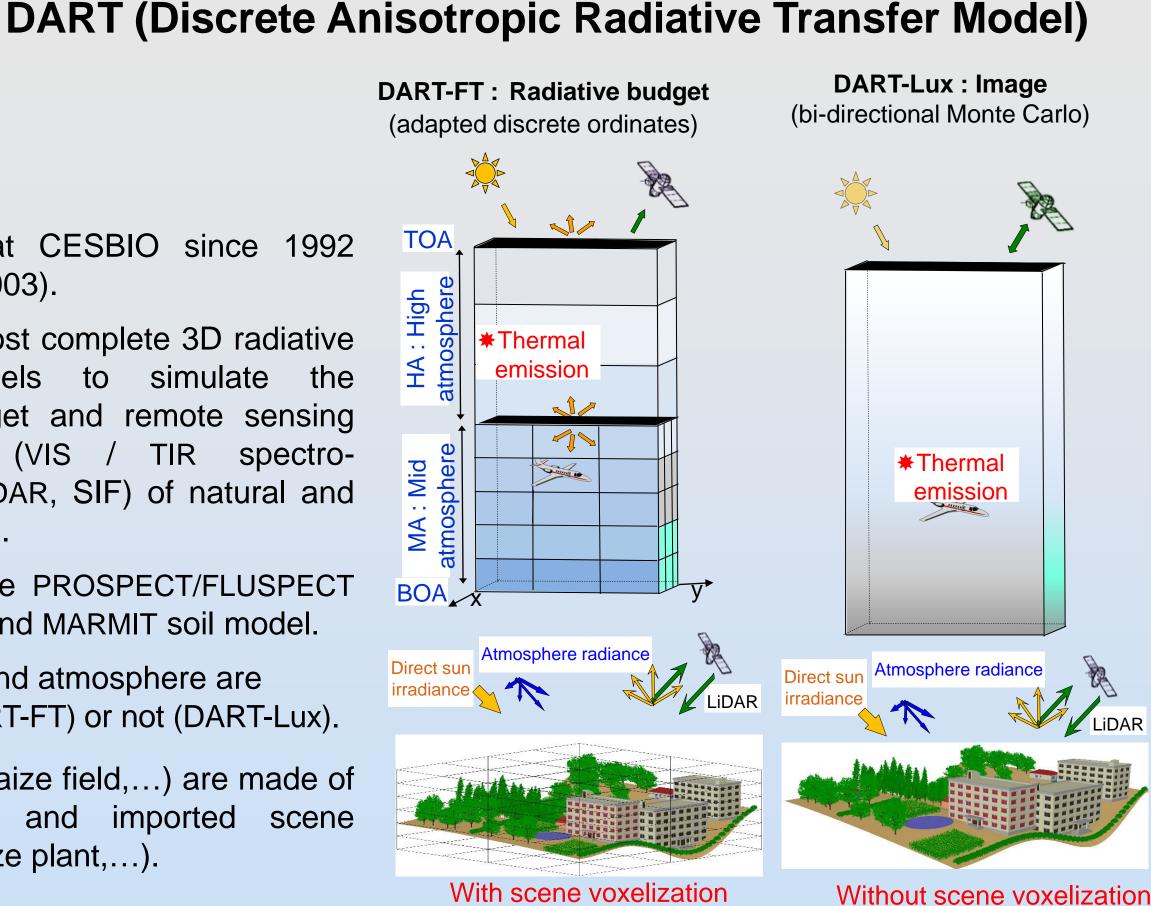
14h

40 nm

40 nm

10 nm

40 nm

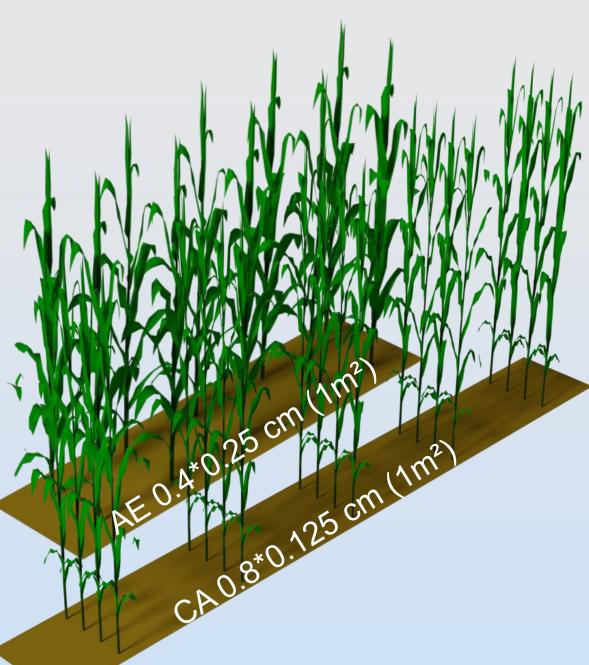

Sensor

Multi

Spec 4

UAV

- Developed at CESBIO since 1992 (patented in 2003).
 - One of the most complete 3D radiative transfer models to simulate the radiative budget and remote sensing observations (VIS / TIR spectroradiometer, LiDAR, SIF) of natural and urban surfaces.
 - It contains the PROSPECT/FLUSPECT plant models and MARMIT soil model.
 - Landscapes and atmosphere are voxelized (DART-FT) or not (DART-Lux).
 - 3D scenes (maize field,...) are made of DART-created and imported scene elements (maize plant,...).

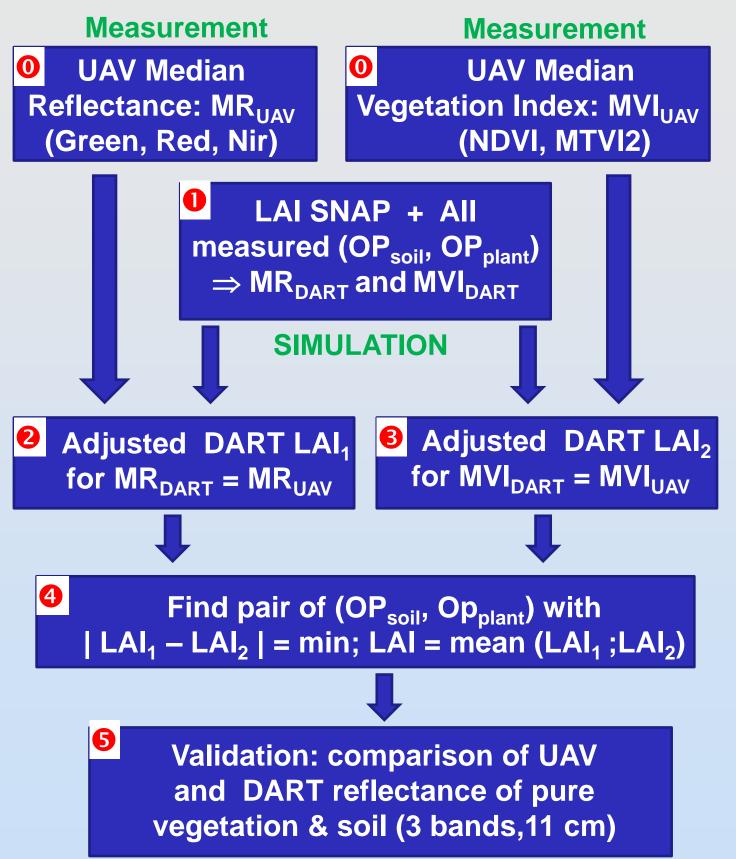


• The DART model: simulation of in-situ radiative fluxes, and 3D radiative budget and images of the fields

TIR). UAV was used to create soil and vegetation classification masks (RGB, resolution: 3 cm)

Mock-up DART

of its determinants. We used:



The AE and CA maize fields are simulated as an infinite repetition of a pattern of 10 plants with specific 3D architecture (plant geometry, LAI, inter-row, inter-plant, row orientation).

The optical properties (soil, stem, plant) are derived from in-situ, UAV and satellite data.

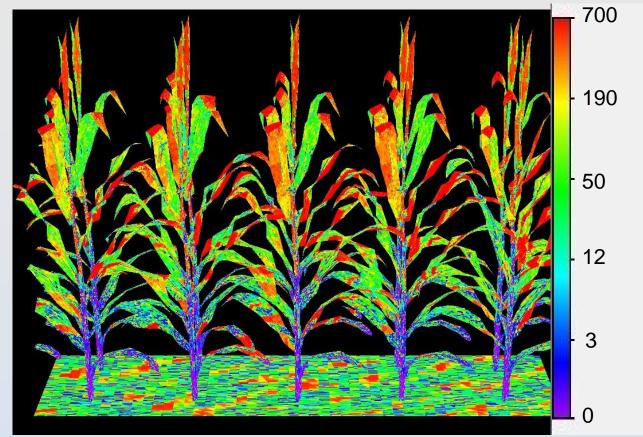
The time variation of spectral direct $E_{BOA,dir}(t,\lambda)$ / diffuse $E_{BOA,diff}(t,\lambda)$ irradiance were derived from a DART-based inversion method applied to local BOA shortwave direct $E_{BOA,dir}(t)$ + diffuse $E_{BOA,diff}(t)$ irradiance.

DART simulated S2 and UAV images according to their observation configurations: spectral bands, and atmospheric conditions using the MidLatSum gas model and the Rural23 aerosol model

LAI adjustment strategy

O Compute Median Reflectance MR_{UAV} and Median Vegetation Index MVI_{UAV} of UAV image • Choice of OP_{soil} and OP_{plant} spectra (in-situ data) **2** Find LAI_1 such that $MR_{DART} = MR_{UAV}$ (11cm)

• Find LAI_2 such that $MVI_{DART} = MVI_{UAV}$ (10 m).


4 Select (OP_{soil}, OP_{plant}) from **1**, **2** and **3** that gives the minimal value of $|LAI_1 - LAI_2|$.

• Validation: compare UAV & DART reflectance of pure soil and vegetation (from RGB classification masks)

The method can also be used with S2 (without step **G**, Mock-up considerate at 10 m)

- Better LAI from UAV & S2 than from S2 SNAP:
 - S2 SNAP: LAI_{AF} = 1.90 and LAI_{CA} = 1.70
 - S2 data: $LAI_{AF} = 3.17$ and $LAI_{CA} = 2.84$
 - UAV data: LAI_{AF} = 3.52 and LAI_{CA} = 3.24 LAI S2 and LAI UAV ≠ LAI SNAP and agreed with Jiang et al., 2022

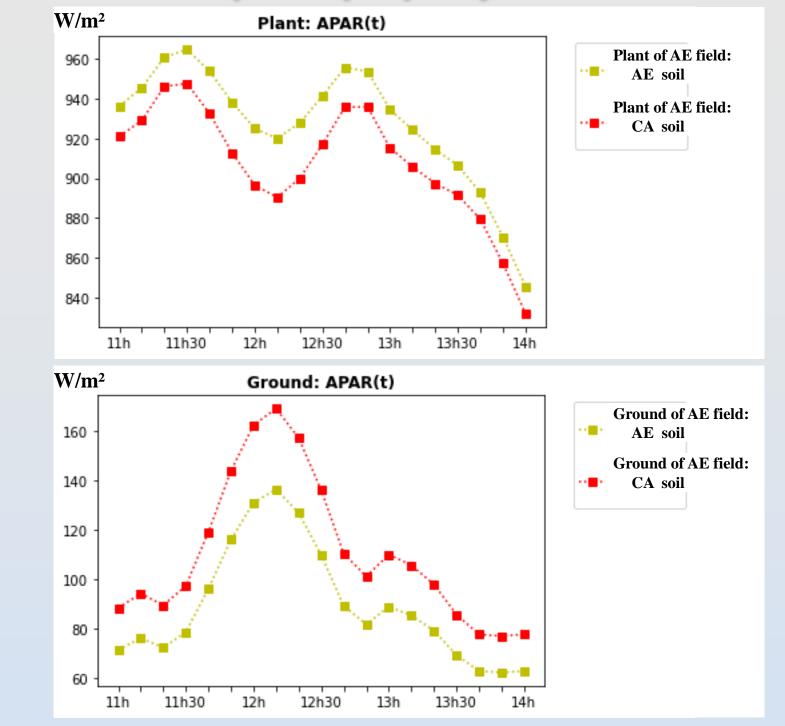
Sensitivity study of RB

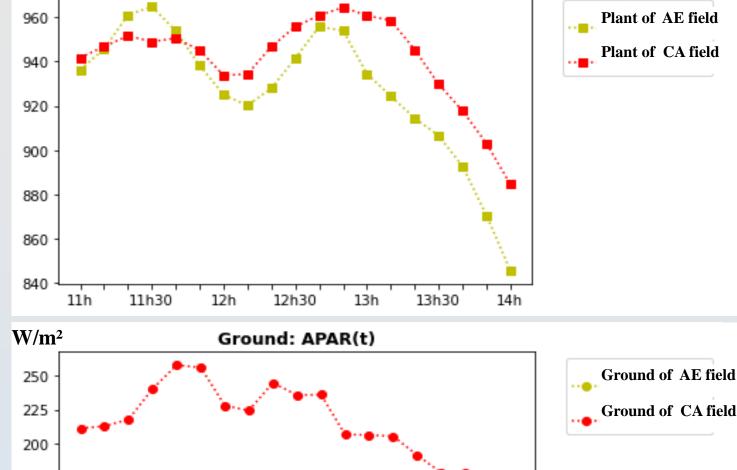
3D radiative budget PAR agro-eco field band 1 (W/m²/µm)

- Time series $\{RB_{plant}(t), RB_{qround}(t)\}$ from 11am to 2pm (Δt =10') in PAR (8 bands) function of:
- 3D geometry: LAI, plant mock-up, plant spacing and orientation
- Optical properties (soil, plant).

This work was carried out with 3D mock-ups to take into account clumping effects (Duthoit et al., 2008) shading and geometry of plants.

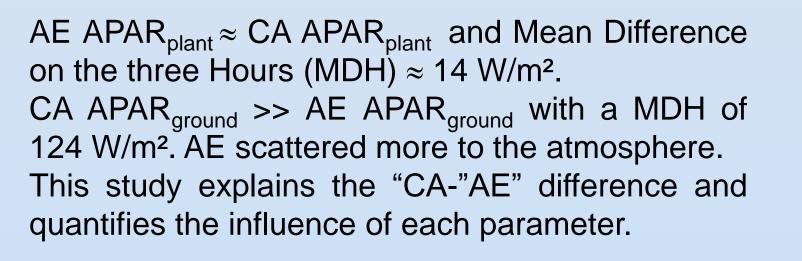
Sensitivity analysis on APAR_{plant} and APAR_{ground}: realistic case, variable LAI, field architecture and OP_{soil}


Plant of AE field:

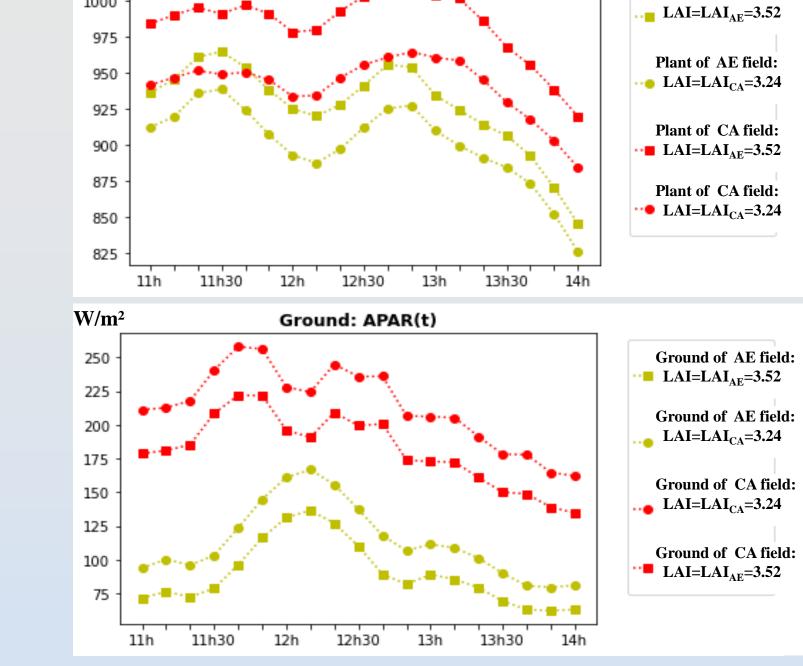

	The	realistic case		
W/m ²		Plant: APAR(t)		W/m ²
960 -	1	- -	Plant of AE field	1000

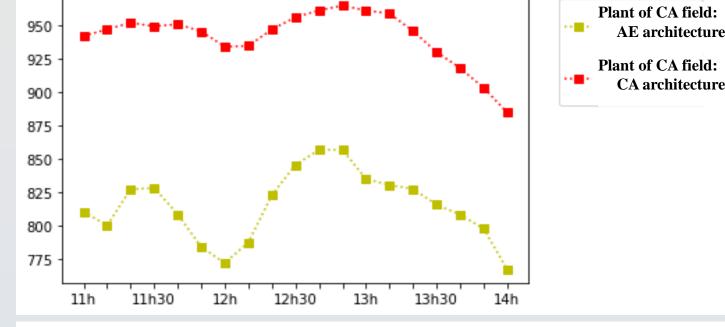
LAI (exchange between fields) Plant: APAR(t)

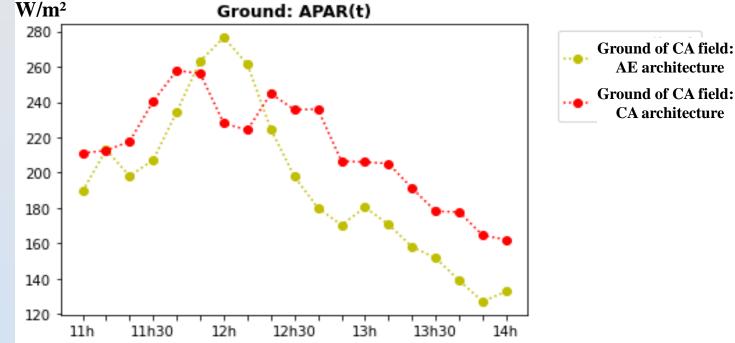
Archi	itecture	(inter-row	– in	terpl	a
n²	Plant: AF	PAR(t)			


Soi	optica	l proper	t١
			-

125


100


13h


12h30

12h

 $APAR_{plant}$ 7 and $APAR_{ground}$ 9 if LAI 7. Here: $LAI_{AE} > LAI_{CA} \Rightarrow$ difference "AE - CA" smaller for APAR_{plant} and larger for APAR_{ground}. If $LAI_{AE} = LAI_{CA}$: MDH of $APAR_{ground} = 92$ W/m² instead of W/m². The difference of LAI contributes but cannot 124 explain alone the differences on APAR_{around} for the real case.

- The architecture of the field with CA :
- Greatly increases APAR_{plant}

 $(MDH = 126 - 147 W/m^2)$

- Slightly increases APAR_{around} $(MDH = 20 W/m^2).$

Tilled soil (CA) \Rightarrow higher APAR_{around} $(MDH \in [20-35 \text{ W/m}^2])$ Crop residue on soil (AE) \Rightarrow higher APAR_{plant} $(MDH \in [20-40 \text{ W/m}^2]).$ OP_{soil} contributes to the difference on APAR_{around}.

Conclusion: Field architecture, LAI and OP_{soil} greatly affect APAR_{around} and APAR_{around} = 124 W/m². The only architectural difference implies Δ APAR_{plant} = 120-147 W/m². It could explain microclimatic differences in the CA and AE fields and the observed differences in local temperatures (https://backoffice.inviteo.com/upload/compte84/Base/inscriptions_projets/supplement20/2522-trishna_days_paul_boitard.pdf).