Observing and retrieving energy budget components over a vineyard in north-eastern Spain using directional thermal infrared data

Mwangi S¹*, Boulet G¹*, LePage M¹, Gastellu-E J-P¹, Bellvert J⁴, Lemaire B¹, Fanise P¹, Roujean J-L¹, Nieto H⁵, Olioso A.^{2,3*}

background : TIR data & ET : environmental monitoring

Figure 1.10

- Thermal data (e.g. MODIS, TRISHNA*, ...) :
 - plant water use and water stress monitoring -important for drought monitoring, irrigation scheduling / optimization, etc.

background : directionality

- Scene simultaneously observed from several directions :
 - acquisition of dissimilar brightness temperatures (TB) likely due to directional anisotropy
 - surface turbulent fluxes are however similar regardless
- Inverting directional TBs using surface energy balance (SEB : point- & contextual-based) models therefore necessitates taking directionality into consideration

observing and modeling of components: vineyard experimental site

- Surface components data collected over a vineyard is presented
 - Elemental temperatures and reconstruction of directional surface temperatures
 - Observed energy balance corrections
- Modeling of near land surface turbulence
 - Overall fluxes based on a standard direction
 - Consistency in direction-based retrievals

Observation of surface components and directional temperature reconstruction

Modeling of surface components

vineyard experimental site: Verdu, SPAIN

Eddy covariance IRT setup [three - 16 system by 12 - thermal cameras; ID1,2,3] *lat / lon : 41.596° N 1.126° E campaign:* apr. 2021 – sept. 2021

Instrumentation:

- Flux tower: turbulence, meteorological conditions
- Net radiometers, soil heat plate (SHP, calormtr. corr.)
 - Thermal infrared cameras

directional surface temperature reconstruction

 (θ_s, φ_s)

cameras; ID1,2,3]

③ ID3 observing the 'sunlit' veg.

Inputs :

UFR97² and 4SAIL³

- T_{sun} and T_{shd} ; sun and view directions, row geometry

DART⁴

- $\Delta = (T_{sun} T_{shd}) \div 2; T_{ave} = (T_{sun} + T_{shd}) \div 2$
- $T_{ill} = T_{ave} + \Delta$; $T_{shd} = T_{ave} \Delta$
- T_{ill}, T_{shd} assigned to respective illuminated and shaded elements simulated by 3D DART radiative transfer (mockup, sun and view dir., row geom.)

directional surface temperature | UFR97, 4SAIL vs DART

Nadir Hot spot Anti hot spot

energy balance closure

$$\mathbf{R}_{\mathbf{n}} - \mathbf{G}^* = \lambda \mathbf{E} + \mathbf{H}$$

Observation of surface components and directional temperature reconstruction

Modeling of surface components

directionality, SEB - UFR97 & SPARSE

planophi

- Out-of-canopy TIR radiation ^{[2][5][6]}:-
 - Dual source (soil [g] and vegetation [v]):

 $(L_{\lambda} \uparrow)(\theta_{v}) = f(T_{g}, T_{v}) - gap \ fraction \ b(\theta_{v}) \ \& \ vegetation \ cover \ 1 - b(\theta_{v})$

With directionality consideration – sunlit [s] / shaded [h] soil/vegetation elements :

 $L_{\lambda} \uparrow (\theta_{v}, \Phi_{v}) = f(T_{gs}, T_{gh}, T_{vs}T_{vh}) - UFR97^{**[2]}$

- Radiative budget (net radiation): $R_n = (S \downarrow -S \uparrow) - (L \uparrow -L \downarrow) = \sum_{vv} R_{n,xx}$
- Surface energy budget (SEB): SPARSE ^[7] extended and coupled ^[8] with **UFR97^[2] ∴ 4 EB Eqs – SPARSE4

$$\begin{split} R_{n,xx} - G^* &= \lambda E_{xx} + H_{xx}; \\ xx &= snlit/shd(s/h), soil/veg. (g/v) \end{split}$$

directionality, SEB - UFR97 & SPARSE

modeling: surface components - fluxes

modeling: surface components – temp.

modelling: directional consistency

modelling: directional consistency

Conclusion

- Inversion from a standard direction (nadir), overall fluxes simulated by both SPARSE algorithms are similar
- Degraded retrieval consistency observed in cross-row direction while better along the rows
- Discrimination between sunlit/shaded elements improves consistency in inversion of simultaneously measured multi-angular TIR data - sensitivity of flux retrievals to direction of view is reduced.

thank you !