

Assessment of Macrophytes Seasonal Dynamics Using Dense Time Series of Satellite Data

Paolo Villa^a, Mariano Bresciani^a, Monica Pinardi^a, Viktor R. Tóth^b, Rossano Bolpagni^c

^a Institute for Electromagnetic Sensing of the Environment (CNR-IREA), Milan (Italy)

^b Balaton Limnological Institute (MTA-BLI), Tihany (Hungary)

^c Department of Life Sciences, University of Parma (UNIPR), Parma (Italy)

istituto per il rilevamento elettromagnetico dell'ambiente

email contact: villa.p@irea.cnr.it

9–13 May | Congress Centre | Prague | Czech Republic

Introduction

- Aquatic vegetation (i.e. **macrophytes**) communities are a key component of **shallow inland water ecosystems**, acting on and interacting with:
 - other primary producers (e.g. phytoplankton)
 - biogeochemical cycles (e.g. carbon pools, N and P cycles)
- New generation of EO platforms (i.e. Sentinel-2), are crucial step forward towards operational monitoring of such dynamic ecosystems.
- We set up a **multitemporal experiment** based on **SPOT5 Take5** data over a fluvial-lake ecosystem with the objective of:
 - investigating the potential of high spatial (10m) and temporal (5 days revisit) resolution satellite data for monitoring macrophyte coverage and their inter-annual morphofunctional dynamics

9-13 May | Congress Centre | Prague | Czech Republic

Project context

 INFORM: Improved monitoring and forecasting of ecological status of European INland waters by combining Future earth ObseRvation data and Models

 Macrosentinel: Macrophytes Phenology Assessment using Sentinel-2

Study area

R

- Mantua lakes system
 - North Italy: 45°10' N, 10°47' E
 - Fluvial-lake system with connected wetlands
 - Water body area: 6.1 km²
 - Average depth: 3.5 m
 - Hypertrophic, different macrophyte stands
 - High anthropic pressure over the watershed (agriculture, husbandry, industry)
 - SPOT5Take5 site: Mantua

Target species

- Main macrophyte species sampled:
 - Nuphar lutea (floating-leaved rhizophyte)

- Nelumbo nucifera (emergent rhizophyte)

- Trapa natans (floating pleustophyte)

9–13 May | Congress Centre | Prague | Czech Republic

Macrophyte parameters data

- 45 samples:
 - 3 sampling points per species (9 per date)
 - 5 sampling dates in 2015 (12 May, 11 June, 16 July, 31 July, 4 September)

• Collected data:

- Fractional cover (fC)
- Leaf Area Index (LAI)
- Above-water biomass (Biom)
- Chlorophyll-a leaf content (Chl-a)

9-13 May | Congress Centre | Prague | Czech

Satellite data

- SPOT 5 HRG data
 - 4 spectral bands:
 - Green (0.50-0.59 μm)
 - Red (0.61-0.68 μm)
 - NIR (0.78-0.89 μm)
 - SWIR (1.58-1.75 μm)

- **5 day** revisit (Take 5 experiment):
 - 27 scenes processed to L2A (surface reflectance)

9-13 May | Congress Centre | Prague | Czech Republic

Methodological approach

SL

Formula

- Cloud cover screening (<5% over study area, 22 S5T5 scenes used)
- Extraction of **time series** of relevant **SIs** (14, see table)
- Selection of **best linear predictors** (3 SIs) for each macrophyte parameter
- SI-based semi-empirical linear modelling of each parameter (fC, LAI, Biom, Chl-a)
 - Collected samples split: 2/3 for training, 1/3 for validation

	1 of mala		0		
AFRI1600	NIR-0.66 NIR+0.665WIR	Karnieli et al., 2001	Fractional cover, LAI		
Chl _{green}	Green NIR	Gitelson et al., 2006	Chlorophyll content		
Cl _{green}	NIR Green	Hunt et al., 2011	Chlorophyll content		
CVI	NIR <mark>Red</mark> Green ²	Hunt et al., 2011	Chlorophyll content		
EVI2	2.4 NIR-Red NIR+Red+1	Jiang et al., 2008	Fractional cover, LAI, Biomass		
GNDVI	NIR-Green NIR+Green	Gitelson and Merzlyak, 1994 Lymburner et al., 2000	Fractional cover, LAI, Biomass		
gWAVI	1.5 NIR-Green NIR+Green+0.5	Tian et al., 2005	Fractional cover, LAI, Biomass		
MCARI1	1.2(2.5(NIR-Red)- 1.3(NIR-Green)	Haboudane et al, 2004	Chlorophyll content, LAI		
MTVI1	1.2(1.2(NIR-Green)-2.5(Red-Green)	Haboudane et al, 2004	Chlorophyll content, LAI		
NDVI	NIR-Red NIR-Red	Rouse et al., 1974	Fractional cover, LAI, Biomass		
RI	Red-Green Red+Green	Escadafal and Huete, 1991 Bannari et al., 1995	Chlorophyll content		
SAVI	1.5 NIR-Red NIR+Red+0.5	Huete, 1988	Fractional cover, LAI, Biomass		
SLAVI	NIR Red+SWIR ₁	Lymburner et al., 2000	LAI		
TrVI	$\sqrt{\left(\left(\frac{NIR-Red}{NIR+Red}\right)\right)+0.5}$	Bannari et al., 1995 Hunt et al., 2011	Chlorophyll content		

References

Vegetation narameters

Results

- Macrophyte functional types map
 - rule-based algorithm fed with multitemporal spectral features
 - adapted from Villa et al., 2015
- Macrophyte morpho-functional traits maps
 - Semi-empirical linear modelling based on best SI predictors:
 - fC
 - LAI
 - Biom (above-water biomass)
 - Chl-a (canopy density)

Validation N=14 (1/3 samples)

Macrophyte parameter	Spectral Index	R ²	MAE	rRMSE
	AFRI1600	0.85	6.3%	0.11
fC (%)	TrVI	0.86	6.0%	0.11
	NDVI	0.86	6.0%	0.11
	MCARI1	0.88	0.14	0.16
LAI (m² m-²)	EVI2	0.88	0.13	0.17
	SAVI	0.87	0.13	0.17
	CVI	0.86 0.0% VI 0.86 6.0% CARI1 0.88 0.14 12 0.88 0.13 VI 0.87 0.13 VI 0.63 0.09 reen 0.56 0.10 DVI 0.51 0.11 reen 0.65 0.31 I 0.60 0.29		0.41
Biom (kg m ⁻²)	Cl _{green}	0.56	0.10	0.47
	GNDVI	0.51	0.11	0.49
	Cl _{green}	0.65	0.31	0.11 0.16 0.17 0.17 0.41 0.47 0.49 0.54 0.58 0.61
Chl-a (g m ⁻²)	CVI	0.60	0.29	0.58
	gWAVI	0.55	0.35	0.61

Villa, P., Bresciani, M., Bolpagni, R., Pinardi, M., and Giardino, C. (2015). Remote Sensing of Environment, 171, 218-233.

9–13 May | Congress Centre | Prague | Czech Republic

Macrophyte map

Morpho-functional traits evolution

	N. lutea	N. nucifera	T. natans	
Emergence timing	12 Apr	07 May	07 May	
Growing phase lenght	60 days	40 days	60 days	
Full canopy timing	21 June	11 June	01 July	
Peak biomasss timing	26 July	30 August	20 August	
Senescence starting	15 August	04 September	20 August	
PoS fC	74.7±2.1%	98.6±1.2%	88.4±2.1%	
PoS LAI	1.00±0.05 m2 m-2	1.79±0.06 m2 m-2	1.31±0.08 m2 m-2	
PoS Biomass	0.20±0.01 kg m-2	0.52±0.05 kg m-2	0.38±0.03 kg m-2	
(Pos: Peak of Season)				

LAI (m2 m-2)

9–13 May | Congress Centre | Prague | Czech Republic

Intra-species variability: N. nucifera

Single stand area (ha)

Intra-species variability: T. natans

Single stand area (ha)

Further developments

- Testing over additional S5T5 sites:
 - Braila islands (RO)
 - Lac du Grand Lieu (FR)
 - Lake Fysigen (SE)
- Sentinel-2 MSI data
 - Integration with S5T5 data (July 2015 on)
 - 2016 (Mantua, Kis-Balaton wetland)

9–13 May | Congress Centre | Prague | Czech Republic

Sentinel-2 MSI capabilities

- Enhanced spectral resolution (Blue bands, RedEdge bands)
 - More reliable sub-type/species distinction?
 - Better estimation of morphological (biomass) and physiological (Chl-a, Cxc) parameters?

Mantua lakes system - Sentinel-2 MSI (13 Aug 2015)

												MSI-
Separability	CD	LM	TN	NL	NN	LH	PA	TV-Lm	TV-Pa	TV-Zm	I-M dist	OLI diff
C. demersum	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.00	0.00
L. minor	0.00	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	1.99	0.02
T. natans	0.00	0.02	0.00	0.02	0.00	0.41	0.42	0.08	0.02	0.00	1.69	0.42
N. lutea	0.00	0.01	0.02	0.00	0.00	0.05	0.00	0.00	0.00	0.00	1.94	0.05
N. nucifera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.00	0.00
L. hexapetala	0.00	0.00	0.41	0.05	0.00	0.00	0.08	0.00	0.01	0.01	1.69	0.41
P.australis	0.00	0.00	0.42	0.00	0.00	0.08	0.00	0.04	0.26	0.29	1.64	0.42
TV - L. multiflora	0.00	0.00	0.08	0.00	0.00	0.00	0.04	0.00	0.11	0.16	1.84	0.16
TV - P. alba	0.00	0.00	0.02	0.00	0.00	0.01	0.26	0.11	0.00	0.43	1.64	0.43
TV - Z. mais	0.00	0.00	0.00	0.00	0.00	0.01	0.29	0.16	0.43	0.00	2.00	0.43

9-13 May | Congress Centre | Prague | Czech Republic

Conclusions

- **Spatial and temporal patterns** of macrophyte seasonal dynamics **can be mapped** from dense time series of multispectral data:
 - High reliability for canopy density parameters
 - rRMSE_{fC}=0.11, rRMSE_{LAI}=0.16
 - Good reliability for biomass and chlorophyll
 - rRMSE_{Biom}=0.41, rRMSE_{Chl-a}=0.54
- Intra-specific variability for most relevant species can be disclosed by exploiting satellite multi-temporal products
 - lentic to lotic conditions gradient for *N. nucifera*
 - open water to coastal stands differences for *T. natans*
- Enhanced capabilities will be granted as soon as Sentinel-2A and B will be both operational (Blue range bands, RedEdge bands, 5 day revisit)

9–13 May | Congress Centre | Prague | Czech Republic

Thank you for your attention

email contact: villa.p@irea.cnr.it

9–13 May | Congress Centre | Prague | Czech Republic