

Can we use Spot 5 Take 5 to monitor dissolved organic carbon in the Arctic river Yenisei ?

Living Planet Symposium 2016 – ESA Prague (9-13 May)

P.-A. Herrault^{1,2}, L. Gandois², S. Gascoin¹, N. Tananaev³, T. Le Dantec², R. Teisserenc²

¹CESBIO Lab. UMR 5126 UPS/CNRS/CNES/IRD ²ECOLAB Lab. UMR 5245 UPS / CNRS UPS Toulouse III, INPT

³Igarka Geocryology Lab.

Permafrost Status
Isolated Sporadic Discontinuous Continuous

Conclusion

Indigirka

Lapte

Lena 3.4-4

Olenek

naha

✓ + 5°C in high-latitudes ✓ 1/3 of the organic carbon in permafrost

 ✓ organic carbon drained by great Arctic rivers → dissolved organic carbon (DOC)
 ✓ Yenisei river is the greatest contributor to Arctic Ocean

Permafrost Status
Isolated Sporadic Discontinuous Continuous

Conclusion

✓ + 5°C in high-latitudes ✓ 1/3 of the organic carbon in permafrost

 ✓ organic carbon drained by great Arctic rivers → dissolved organic carbon (DOC)
 ✓ Yenisei river is the greatest contributor to Arctic Ocean

Data and Methods

Results

 $\underset{\bigcirc \bigcirc}{\mathsf{Conclusion}}$

Context

Yenisei, 22/05/2015 (crédit : TOMCAR-Permafrost)

Context

✓ 80 % of DOC fluxes in the peakflow period
 ✓ Logistical problems to sample DOC
 ✓ Remaining iso brooks

- ✓ Remaining ice-breaks
- ✓ Very short-period (a few weeks in May and June)

 ✓ Lack of knowledge on DOC spatial patterns at largest scales and on DOC temporal dynamics

Context – Remote sensing could be a precious tool

✓ 80 % of DOC fluxes in the peakflow period
 ✓ Logistical problems to sample DOC
 ✓ Remaining ice-breaks

✓ Very short-period (a few weeks in May and June)

 ✓ Lack of knowledge on DOC spatial patterns at largest scales and on DOC temporal dynamics

Background

- ✓ Numerous CDOM retrieval algorithm have been developed in oceans, lakes and more recently on Arctic rivers (for a review : Zhu et al, 2014; Brezonik et al, 2015)
- \checkmark 2 major approaches to explore relationships between CDOM and optical signal

✓ Easy to calibrate ✓Current problems of linear regression(outliers, overfitting) ✓ Best description of the processes ✓ Input data rarely available

Transfer radiative data

Background

- ✓ Numerous CDOM retrieval algorithm have been developed in oceans, lakes and more recently on Arctic rivers (for a review : Zhu et al, 2014; Brezonik et al, 2015)
- ✓2 major approaches to explore relationships between CDOM and optical signal

Prior knowledge on absorption capacities

Transfer radiative data

✓ Geographic-area dependent

 ✓ Spectral band combinations are effective (band ratio or band multiplication)

✓ namely shorter and longer wavelengths combination

lssues

✓ Low- spatial resolution sensors are effective to monitor CDOM in oceans or lakes but high-spatial sensors are more suited for Arctic rivers :

\rightarrow to evaluate the spatial heterogeneity of DOC

 \rightarrow to characterize the river during the ice-break period or between clouds

→ for their atmospheric corrections

- ✓ Available high- spatial resolution sensors (Landsat, Spot) have a too low repeat-cycle orbite :
 - \rightarrow to evaluate DOC dynamics in the freshest period
 - \rightarrow to have an acceptable number of spatial acquisitions

Goals

 Developing a CDOM algorithm retrieval at high spatial and temporal resolution to :

→ to evaluate the DOC dynamics during the open water season with a special focus on the freshest period

- → to evaluate **the spatial heterogeneity of DOC** in the river channel
- \checkmark Specific objectives are :
 - \rightarrow finding an optimal **spectral bands configuration**
 - → evaluating **the predictive performance** of the developed model
 - Aiscussing the potentiality of high spatio-temporal optical remote sensing

 \rightarrow Preparation for Sentinel 2 data

 $\underset{\bigcirc \bigcirc}{\mathsf{Conclusion}}$

Study site – Yenisei river (Igarka – Take 5 Site)

Methodological flowchart

Synchronisation of in-situ measurements and Spot 5 Take 5 acquisitions

✓ 25 ST5 scenes from 09/04/2015 to 06/09/2015✓ 41 field samples in 2014 and 28 in 2015 (DOC CDOM

✓ 41 field-samples in 2014 and 28 in 2015 (DOC, CDOM, TSS)

Synchronisation of in-situ measurements and Spot 5 Take 5 acquisitions

- ✓ 25 ST5 scenes from 09/04/2015 to 06/09/2015
- ✓ 41 field-samples in 2014 and 28 in 2015 (DOC, CDOM, TSS)

Synchronisation of in-situ measurements and Spot 5 Take 5 acquisitions

- ✓ 25 ST5 scenes from 09/04/2015 to 06/09/2015
- ✓ 41 field-samples in 2014 and 28 in 2015 (DOC, CDOM, TSS)
- ✓ Only 6 ST5 scenes and 6 L8 scenes selected (clouds, hazing effects, acquisitions during the ice-period, too large gaps)
- ✓ 6 dates during the peakflow period (namely 22/05)

Time-series

L8 (22/05) ST5 (03/06) ST5 (18/06) ST5 (11/07) L8 (22/07) L8 (08/08) L8 (08/09)

Image corrections

 \checkmark Surface reflectance products were used

- ✓ MACCS processor (Hagolle et al, 2015)
- ✓ L8SR (L8SR Product Guide)

Field sample treatments

- ✓ Field measurements concern DOC (mg/L), CDOM (m⁻¹) and TSS (mg/L)
- ✓ Absorbance at 440 nm was chosen (Brezonik et al, 2015)

Methodological flowchart

CDOM as a proxy to retrieve DOC concentrations?

- ✓ All field-samples were used (N = 69)
- ✓ Goal : More robust statistical relationship

Extraction of water surface reflectances

 \checkmark A water extraction was defined :

✓ 15 km North-South✓ from 300 m to river banks

- ✓ Goal : increasing the possibility to have cloud-free pixels
- \checkmark [Min, max, mean, std] in Green and Red channels of each spatial scene

Conclusion

Living Planet Symposium 2016 – Prague (9-13 May)

retrieval

prediction

prediction

CDOM algorithm development and statistical analyses

- \checkmark Based on existing models developed for oceans, lakes or rivers
 - \checkmark Kutser (2005) on Swedish lakes
 - \rightarrow green-red ratio
 - ✓ Griffin (2011) on Kolyma river (Northern-Siberia)
 - \rightarrow green-blue ratio + red
- ✓ Spectral band multiplications were also tested (interaction term)
- ✓ Goodness of fit was examined with R² and Root Mean Square Error (RMSE)

CDOM can be used as a proxy to retrieve DOC concentrations in the Yenisei river

Living Planet Symposium 2016 – Prague (9-13 May)

The CDOM model developed shows high performances

Living Planet Symposium 2016 – Prague (9-13 May)

Shorter and longer wavelengths interaction to retrieve DOC concentrations

CDOM = -681,4*[Green] + 16410,9*[Green:Red]

Shorter and longer wavelengths interaction to retrieve DOC concentrations

- Negative relationship between CDOM and [Green]
- \checkmark Expected relationship

Conclusion

Shorter and longer wavelengths interaction to retrieve DOC concentrations

✓ Expected relationship

- ✓ Relationship between [Green] and CDOM depends on red reflectance values
- \checkmark TSS strongly reflects light in red band

Conclusion

Shorter and longer wavelengths interaction to retrieve DOC concentrations

- Negative relationship between CDOM and [Green]
- Expected relationship

- Relationship between [Green] and CDOM depends on red reflectance values
- $\checkmark\,$ TSS strongly reflects light in red band

→ For high values of TSS (> 15 mg/L) , statistical relationship between shorter wavelengths and CDOM is noised

If combined with high-spatial resolution, multi-temporal remote sensing data are precious to retrieve DOC in Arctic rivers

 \checkmark DOC evaluations :

- ✓ To evaluate DOC in a hot-moment
- \checkmark To evaluate the spatial variability of DOC at largest scales
- ✓ Methodologically
 - \checkmark To increase the possibility to have cloud-free scenes
 - \checkmark To select pixels between cloud or ice-breaks
 - $\checkmark\,$ To apply more accurate atmospheric corrections

If combined with high-spatial resolution, multi-temporal remote sensing data are precious to retrieve DOC in Arctic rivers

 \checkmark DOC evaluations :

- ✓ To evaluate DOC in a hot-moment
- \checkmark To evaluate the spatial variability of DOC at largest scales
- ✓ Methodologically
 - \checkmark To increase the possibility to have cloud-free scenes
 - \checkmark To select pixels between cloud or ice-breaks
 - $\checkmark\,$ To apply more accurate atmospheric corrections

Sentinel 2/Landsat 8 synergies are promising to retrieve DOC in Great Arctic Rivers

Conclusion

- ✓ An effective CDOM retrieval algorithm with six dates in the freshest period
- ✓ Additional dates in the model will be needed (only 12 dates)
- ✓ Shorter and longer wavelengths combinations are powerful
- \checkmark Potential TSS perturbations have to be taken into account

Perspectives

✓ Low and High spatial resolution could be complementary
 ✓ Sentinel 2 acquisitions in Igarka :

→Surface reflectance products will be delivered
→New field campaigns will be drived
→Further studies are coming...

Conclusion

Thanks!

Questions ?