Modélisation, spatialisation et assimilation des données de la télédétection pour la gestion de l’eau des milieux semi-arides

Gilles Boulet

To cite this version:

HAL Id: tel-00606974
https://tel.archives-ouvertes.fr/tel-00606974
Submitted on 7 Jul 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MEMOIRE POUR L’OBTENTION DU DIPLOME D’HABILITATION A DIRIGER DES RECHERCHES
Spécialité : Sciences de la Terre et de l’Univers

Modélisation, spatialisation et assimilation des données de la télédétection pour la gestion de l’eau des milieux semi-arides

présenté le 4 octobre 2010
à l’Université Paul-Sabatier Toulouse III

par

Gilles Boulet
Centre d’Etudes Spatiales de la BIOsphère

devant le jury composé de :

A. Chanzy Directeur de Recherche INRA, EMMAH Rapporteur
G. Chehbouni Directeur de Recherche IRD, CESBIO Examinateur
J.-P. Gastellu Professeur UPS, CESBIO Directeur de Recherche
J.-P. Lagouarde Directeur de Recherche INRA, EPHYSE Président
P. Ribstein Professeur UPMC, SISYPHE Rapporteur
E. Servat Directeur de Recherche IRD, HSM Rapporteur
Sommaire :
Pages 4-19: Curriculum Vitæ détaillé

1. Introduction Générale .. 20
 1.1. Contexte ... 20
 1.1.1. Trois axes de recherche .. 21
 1.1.2. Trois zones d’intérêt .. 22
 1.1.3. Trois outils de recherche ... 23
 1.2. Tableau récapitulatif axes/domaines ... 29
2. Travaux de modélisation en hydrologie spatiale ... 30
 2.1. Couplage 1D – redistribution latérale ... 31
 2.2. Simplification des schémas de surface .. 36
 2.2.1. SVATsimple .. 36
 2.2.2. kBT radiométrique .. 39
 2.3. Comparaison de modèles de complexité croissante : .. 41
 2.3.1. SVATs .. 41
 2.3.2. Modèles de fonte de neige .. 46
3. Stratégies de spatialisation, de changement d’échelle et de traitement des hétérogénéités49
 3.1. Les milieux épar : quel bilan d’énergie ? 1, 2,n sources .. 49
 3.2. Spatialisation du bilan hydrique à l’échelle du Bassin Versant ... 51
 3.2.1. Démarche descendante .. 51
 3.2.2. Démarche ascendante ... 52
 3.3. Transfert d’échelle lié à l’utilisation des données Basse Résolution .. 53
 3.3.1. Les surfaces enneigées .. 53
 3.3.2. La température de surface ... 54
4. Assimilation de données in-situ et de télédétection .. 56
 4.1. La température radiative de surface ... 58
 4.1.1. Utilisations de la température de surface pour estimer l’évaporation 58
 4.1.2. Détection du stress .. 59
 4.1.3. Le test d’évaporation ... 60
 4.1.4. Assimilation des données thermiques directionnelles ... 63
 4.2. Assimilation conjointe du NDVI et de la température de surface... 65
 4.3. Assimilation des surfaces enneigées ... 65
 4.4. Assimilation des futures données SMOS ... 67
 4.4.1. Calibration séquentielle .. 67
 4.4.2. Calibration en ligne .. 68
 4.4.3. Assimilation de l’humidité de surface désagrégée ... 70
5. Perspectives : quel Système d’Observation pour l’hydrologie en Méditerranée ?72
 5.1. Stratégies d’assimilation : s’assurer que l’innovation est conforme à la réalité du fonctionnement du système... 72
 5.2. Un Système d’Observation pour les bassins versants intermittents 73
 5.3. Les nouvelles observables : SMOS, Venus et Mistigri ... 75
 5.3.1. Mistigri .. 76
 5.3.2. SMOS L4 et l’assimilation à l’échelle du BV / NAFE ... 76
6. Conclusions ... 76
Références ... 78
Liste des Tableaux :

Tableau 1 : Mesures effectuées sur les cultures irriguées de la plaine du Haouz (BV Tensift) 25
Tableau 2 : Thèmes de recherche (en gras = thèmes principaux), les projets dans lesquels ils s’inscrivent, et les principales publications qui en découlent .. 29
Tableau 3 : Fiche 1 : Adaptation de TOPMODEL au couplage avec les modèles SVAT ... 34
Tableau 4 : Fiche 2 : Expression du bilan d’énergie monosource ... 37
Tableau 5 : Fiche 3 : Expression analytique de l’évaporation à partir de l’équation de Richards (1931) 38
Tableau 6 : Classification des méthodes d’estimation de l’évaporation à l’aide des données thermiques 59
Tableau 7 : Efficiences de simulation des débits selon le schéma d’assimilation (Pellenq et al., 2003) 69
Liste des Figures :

Figure 1: Photos des différents sites de mesure du projet SudMed.. 24
Figure 2: Dispositif expérimental du BV du Tensift (demande de SOERE déposée par L. Jarlan et M. Le Page) .. 25
Figure 3: Classification des différents modèles SVAT développés ou utilisés pour l’Axe 1................................. 27
Figure 4: Schéma de couplage SVAT-Hydrologie ... 32
Figure 5: Performance d’ISBA-TOPMODEL à Vogüé (Pellenq, 2002) ... 35
Figure 6: Comparaison des débits simulés par IBA-TOPMODEL et TOPMODEL (Pellenq, 2002)......................... 35
Figure 7: Histogramme des efficiences des divers modèles pour 24 épisodes de pluie (Pellenq, 2002)................. 36
Figure 8: Schéma de SVATsimple ... 39
Figure 9: Différentes estimations du paramètre β (données du site blé R3).. 41
Figure 10: Intercomparaison des performances d’ISBA et d’ICARE pour le bilan d’énergie global des oliviers de l’Agdal... 42
Figure 11: Performances d’ICARE et ISBA pour la transpiration (LEv) et l’évaporation du sol (LES) 42
Figure 12: Efficience de l’évaporation totale en fonction des deux paramètres hydrauliques principaux........ 44
Figure 13: Evolution de l’évaporation du sol et de la transpiration pour le maximum d’efficience sur l’évaporation totale.. 44
Figure 14: Détermination des stress hydrauliques à partir des chroniques d’humidité... 45
Figure 15: Efficience de la température de surface en fonction des deux paramètres hydrauliques principaux 45
Figure 16: Équivalent en eau de la neige observé et simulé par ISBA_ES (Boudhar, 2009)................................. 48
Figure 17: Cumuls des parts sublimation et fonte simulées par ISBA_ES (Boudhar, 2009)............................... 48
Figure 18: Températures observées pour différents éléments de l’orangerie du site de Saada au Maroc (à gauche) et schéma multicompartment proposé pour le décrire (à droite)... 49
Figure 19: Températures observées et simulées pour différents éléments de l’orangerie 50
Figure 20: Modèle couplé « Mini-SEVE » et son application au cas « arbre isolé » de l’orangerie Saada2 51
Figure 21: Répartition entre écoulements profonds et superficiels dans la Rheraya : observation (à gauche) en 2003 et simulation (à droite) en 1990/1991 (Chaponniere et al., 2008). ... 52
Figure 22: Scaterrogrammes des surfaces enneigées simulées avec (à droite) et sans (à gauche) tenir compte de la sublimation versus les surfaces enneigées observées par télédétection (Boudhar, 2009). 53
Figure 23: Cartes de températures de surface avant et après désagrégation... 55
Figure 24: Statistiques d’erreur de la méthode de désagrégation statistique.. 55
Figure 25: Présentation schématique des différents termes utilisés en assimilation des données............... 57
Figure 26: Système d’Observation .. 58
Figure 27: Lien entre deux indicateurs de stress hydrique basés sur la température de surface et le facteur de stress (ts-tsp : différence entre les températures de surface en conditions réelles et potentielles ; ts-ta : différence entre la température de surface et la température de l’air)......................... 60
Figure 28: Couples de solutions retenus par les différentes méthodes pour le site R3................................. 62
Figure 29: Couples de solution retenus par les différentes méthodes pour le site SALSA96 62
Figure 30: Gammes comparées de variations du flux de chaleur latente et de la température radiative de surface (à gauche) et de la différence entre les températures radiatives acquises au nadir et à 55° (à droite) en fonction de l’humidité de surface et de l’humidité de la zone racinaire .. 64
Figure 31: Expérience jumelle d’assimilation de la température de surface directionnelle : « true » : observation, « openlop » : simulation sans assimilation, « EnKF T0 » : assimilation de la température acquise au nadir seulement, « EnKF T0/TS5 » : assimilation des températures acquises au nadir et à 55° 64
Figure 32: Simulations de débit à l’aide de SRM forcé par les surfaces enneigées observées par télédétection (MOD1) et simulées (MOD2), (Boudhar et al., 2009a).. 66
Figure 33: Apport de la calibration en ligne de la profondeur hydrologiquement active (Pellenq et al., 2003) .. 69
Figure 34: Proposition d’algorithme pour l’étalonage et l’assimilation.. 69
Figure 35: Performance comparée de l’assimilation des données SMOS désagrégées ou non (Merlin et al., 2006) .. 71
Figure 36: Schéma de la plateforme de modélisation-assimilation .. 73
Figure 37: Gammes d’observations permettant de contraindre le bilan hydrique de la Rhéraya......................... 74
Figure 38: Proposition d’algorithme pour les démarches descendante/ascendante en modélisation 75
Curriculum Vitae

Gilles Boulet

Né le 29/07/1971
CESBIO, 18 av. E. Belin, bpi 2801, 31401 Toulouse cedex 9,
Tel./Fax. 05 61 55 85 46/00, Courriel Gilles.Boulet@ird.fr

Fonctions

CR1 IRD au Centre d’Études Spatiales de la BIOSphère (UMR 5126 CNRS-CNES-IRD-UPS)

- Équipe « modélisation écohydrologique des surfaces »
- Chantier « Modélisation Et Données Multi-sources pour la gestion des EauX en zone aride »

Récipiendaire de la Prime d’Excellence Scientifique IRD en 2009
Responsable du module « Cycle biosphérique de l’eau » pour le Master M2R H2SE de l’UPS/INPT

Membre du comité TOSCA du CNES de 2003 à 2009
Membre du Groupe Mission MISTIGRI du CNES depuis 2009
Membre nommé du Conseil de Laboratoire depuis 2007

Domaines de recherche

- Assimilation des données de la télédétection dans des modèles de fonctionnement des surfaces continentales, constitués de modèles d’échanges sol-plante-atmosphère (SVAT), de modèles de fonte de neige et de modèles hydrologiques distribués
- Modélisation et expérimentation écohydrologique : adaptation aux spécificités des milieux semi-arides ; intercomparaison de modèles de complexité croissante ;
- Développement de méthodologies de changement d’échelle permettant de relier les paramètres de la surface acquis ou inversés à partir de mesures de télédétection de haute et basse résolution spatiales.

Formation

Séjour postdoctoral CNES au CESBIO, Toulouse. Resp. Y. Kerr. Projet SMOS (Soil Moisture and Ocean Salinity). Développement d’une méthodologie d’assimilation dans un modèle hydrologique distribué de la teneur en eau acquise à grande échelle par télédétection.

DEA « Mécanique des Milieux Géophysiques et Environnement », Univ. Grenoble I.

Expérience professionnelle et mobilité géographique

05-06 **Missions Longue Durée**, Fac. des Sciences Semlalia, UCAM, Marrakech, Maroc. Chantier SudMed (2*3 mois).

02-04 **Affectation**, Fac. des Sciences Semlalia, UCAM, Marrakech, Maroc. Chantier SudMed (2 ans 10 mois).

01 **Séjour d’étude**, Ralph M. Parsons Lab. Du MIT à Boston, USA. Formation en assimilation des données (1 mois).

Partenariat, collaborations

Partenariat avec les pays du sud

Collaborations avec des laboratoires étrangers et participation à des programmes scientifiques internationaux

- Une collaboration déjà ancienne a été maintenue autour du programme SMOS avec le Prof. J. Kalma de l’Université de Newcastle (Australie).
- IRRIMED a réuni des partenaires scientifiques au nord (CESBIO, LISAH et le Lab. De Météorologie de l’Université de Wageningen) et au sud de la Méditerranée autour de la gestion de l’eau en zone
agricole semi-aride: 3 en Jordanie, (MWI, Univ. of Jordan, NCARTT), 1 en Tunisie (INRGREF), 1 en Syrie (ACSAD), ainsi que nos partenaires marocains (FSS et ORMVAH).
- Collaboration avec les équipes du projet européen PLEIADES (consortium international regroupant plusieurs partenaires du sud, notamment nos partenaires marocains et mexicains).

Contrats de recherche

Programme TOSCA du CNES et AO cal/val SMOS de l’ESA
- PI du projet « Disaggregation of SMOS data at the catchment scale and assimilation into distributed hydrological model » du TOSCA (2006-2008, ~25k€) + col (avec Jeff Walker, Melbourne University, Australie) de la proposition « Disaggregation of SMOS data at the catchment scale and assimilation into distributed hydrological model » liée à l’appel d’offre « SMOS Calibration/Validation » de l’ESA (pas d’incidence financière, financement obtenu via le TOSCA).

Programme PAI des Affaires Étrangères

Programme ANR « vulnérabilité : milieux et climats »
- Membre du programme ANR MESOEROS21 « MEDiterranean SOils EROSion and vulnerability to global change during the 21st century » de Y. Le Bissonnais (LISAH), à partir de 2007 (impact des changements climatiques sur le régime hydronivologique de la Rhéraya).

Programme National de Télédétection Spatiale (PNTS)

Programme National de Recherche en Hydrologie (PNRH)
Programme Européen INCO-MED du 5ème et 6ème PCRD

Composition de l’équipe et responsabilité propre dans cette équipe
L’équipe du chantier MedMex est constituée, outre de moi-même, de Benoît Duchemin (CR IRD, spécialisé dans l'utilisation de la télédétection en relation avec les modèles de croissance des cultures), Lionel Jarlan (CR IRD, spécialisé dans l’assimilation de données de télédétection dans des modèles couplés SVAT/ fonctionnement de la végétation à l’échelle continentale) Ghani Chehbouni (DR IRD, bioclimatologue spécialiste de la régionalisation des flux par scintillométrie), Vincent Simonneaux et Michel Lepage (IR et AI IRD, spécialistes SIG/télédétection), Richard Escadafal et Bernard Mougnot (DR et CR IRD resp., spécialistes des applications de la télédétection pour le suivi et la cartographie des sols). Mes responsabilités/expertises au sein du chantier concernent actuellement:
- la modélisation SVAT, la modélisation de la fonte de la neige, et la modélisation hydrologique.
- l’estimation spatialisée de l’évapotranspiration à partir de données Infrarouge Thermique.
- l’étude du transfert radiatif dans l’Infrarouge Thermique (modélisation/expérimentation).
- une partie de l’organisation logistique ainsi que la conception et la mise en place du protocole de mesure de l’humidité du sol et des dispositifs d’observations hydrométéorologiques lors des projets « SALSA », « SudMed » et « Yaqui 2008 ».

Activités dans le domaine de la gestion et de l’évaluation de la recherche

Expertise académique
- Rapporteur de la thèse de doctorat de Rocco Panciera (University of Melbourne, Australie) intitulée « Effect of land surface heterogeneity on satellite near-surface soil moisture observations », avril 2009.
- Rapporteur de la thèse de doctorat de Christoph Rüdiger (University of Melbourne, Australie), intitulée « Streamflow data assimilation for soil moisture prediction », janvier 2007.

Information et communication
- Deux séminaires « midi-pile » (étudiants et chercheurs du CESBIO).
- Séminaire « interactions au sein de la biosphère » (Fac. des Sciences Semlalia, Marrakech, Maroc)
- Séminaire invité à l’ENS Lyon (Mars 2006) intitulé « Utilisation de la télédétection pour la gestion de l’eau à l’échelle régionale »

Formation à et pour la recherche

Postdocs :
- coencadrement (avec V. Rivalland) du postdoc d’Ahmad Albitar intitulé « modélisation 3D des échanges de masse et d’énergie dans les couverts épars : projet Mini-SEVE ».
- coencadrement (avec G. Dedieu) du postdoc d’Hélène Roux intitulé « couplage du modèle SVAT ISBA et du modèle hydrologique TOPMODEL ».

Thèses :
- Co-directeur (avec L. Hanich, Faculté des Sciences et Techniques de Guéliz, Université Cadi Ayyad, Marrakech, Maroc) de la thèse d’Abdelghani Bouddhar intitulée « Télédétection et modélisation de la contribution de la fonte des neiges au débit dans le Haut Atlas marocain » (soutenue le 21 Décembre 2009).

Publications co-signées afférentes :

Communications co-signées afférentes (+ avec actes):

- Encadrant principal (75%) de la thèse d’Anne Chapronnière intitulée « Fonctionnement hydrologique d’un bassin versant montagneux semi-aride; cas du bassin versant du Rehraya (Haut Atlas marocain) » (Direction : R. Escadafal, soutenue le 27 Mai 2005).

Publications co-signées correspondantes :

Communications co-signées correspondantes (* = avec actes):

Publications co-signées correspondantes :

Communications co-signées correspondantes (* = avec actes):

Stages
- Bertrand Guerrero, « Mise en place d’une Base de Données spatialisées dans le cadre du Projet NAFE’05 », EPTEGE, mars-août 2007, co-encadrement Philippe Maisongrande
- Sylvain Jardel, « Validation des chroniques de profils de teneur en eau sur les sites SAMSAT de NAFE’05 », stage de 2ème année d’ENSEEHT, juillet-août 2007.

Activités d’enseignement
- Intervenant (10h) d'une formation organisée à l'ITSON (Mexique) auprès des participants de l'expérience « Yaqui 2008 » (1 auxiliaire de recherche, 1 étudiant de doctorat, 5 étudiants de Master en Sciences des Ressources Naturelles, 5 étudiants en Ingénierie des Sciences de l'Environnement) intitulée « The vegetation water cycle according to the FAO56 method ».
- Organisateur et formateur (30h) unique (assisté de I. Benhadj pour la partie Travaux dirigés) du Third project training workshop « crop water modelling tools » à Tunis, Tunisie, dans le cadre du projet IRRIMED (voir http://www.irrimed.org/activities/workshops.htm).
- Animation d’une session de formation en agrométéorologie dans le cadre du projet SudMed. Faculté des Sciences Semlalia, Marrakech, Maroc, 6h, 5 mai 2003.
- Cours dans le cadre de l’UFR « nouvelles techniques de gestion des ressources naturelles » de la Faculté des Sciences Semlalia, Université Cadi Ayyad de Marrakech, 10h, avril-mai 2002.

Publications

Bibliométrie Science Citation Index Expanded (SCI-EXPANDED) – février 2010

Articles dans des revues scientifiques internationales avec comité de lecture :

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000
1999

1998

1997

Communications (* = avec actes)

2009

2008

2007

2006

2005

2004

2003

2002

2001

1999

1998

1997

1996

1995

1. Introduction Générale

1.1. Contexte

Ces enjeux sociétaux de gestion durable des ressources en eau dans les régions arides, qui sont aussi des enjeux de développement, sont au cœur des recherches engagées au sein de l’IRD et du CESBIO depuis plus de dix ans, à l’occasion de projets de coopération tels que SALSA (Goodrich et al., 2000) au nord du Mexique ou SudMed (Chehbouni et al., 2008) au sud et à l’est de la Méditerranée. Ces projets associent une démarche de recherche fondamentale (développement des connaissances) et un effort de recherche appliquée ou finalisée (développement de méthodologies robustes de gestion et de prévision de la disponibilité de la ressource). L’objectif général est de développer des méthodes d’analyse diagnostique et pronostique et des outils de gestion rationnelle et durable des ressources en eau intégrant à la fois ces dimensions naturelles et anthropiques.

Pour ce faire, des outils de calcul des besoins en eau des plantes (et notamment des couverts agricoles) et d’estimation des pertes réelles des surfaces, doivent être mis en place à toutes les échelles spatiales et temporelles qui intéressent les décideurs, qu’ils soient l’exploitation agricole, l’agence de bassin ou les services de prospective de l’état. Cela suppose que l’on est capable non seulement d’apprécier la forte variabilité du bilan hydrique pour des échelles de temps et d’espace emboîtées allant du point au grand bassin versant et du cycle diurne à la variabilité interannuelle, mais aussi de séparer les facteurs naturels et anthropiques de cette variabilité. Cela signifie également que nous sommes capables de comprendre les mécanismes et de décrire les interactions entre les différents processus qui produisent ou participent à cette variabilité. Ceci se traduit par l’association de modèles écohydrologiques ou agrohydrologiques de différents niveaux de complexité, représentant au mieux les processus biogéophysiques mis en jeu, et, compte tenu des incertitudes qui pèsent sur l’utilisation de tels modèles, de moyens d’observation permettant d’alimenter leurs entrées et de contraindre leurs sorties. Ceci concerne aussi bien les données continues dans le temps mais discrètes dans l’espace (i.e. les données in-situ des observatoires) que les données discrètes dans le temps et spatialement distribuées (i.e. les données satellitaires). Ces outils nécessitent en effet une grande quantité de données, notamment météorologiques, dont l’accès est rendu difficile à la fois par la faible densité des réseaux de mesures et leur dégradation par défaut de maintenance mais aussi la nécessité d’effectuer ces estimations sur de larges superficies. C’est seulement en combinant de façon optimale les données facilement accessibles et spatialement distribuées telles que les données de la télédétection, mais aussi les sorties des modèles de prévision météorologiques par exemple, que l’on peut mettre en place des méthodologies robustes d’estimation de l’évapotranspiration réelle (ETR) et du bilan hydrique en général. Ces méthodes
doivent également être adaptées aux spécificités de la végétation méditerranéenne, notamment en termes d’espèces et de conduite de l’irrigation, et nécessitent donc une phase de calibration et validation. Celle ci est réalisée grâce à des campagnes de mesures intensives in-situ à l’échelle de la parcelle (cultures annuelles, mais aussi couverts complexes tels que les vergers) ou du parcellaire agricole (souvent morcelé à l’extrême), et en considérant également les zones d’agriculture pluviale et de parcours (végétation éparse) dont la très large extension compense la moindre consommation en eau.

Actuellement, Le CESBIO participe au développement de ces méthodologies d’estimation du bilan hydrique spatialisé à travers trois chantiers géographiques :
- le bassin versant du Tensift depuis 2002 (plaine agricole du Haouz) au Maroc,
- le bassin versant du Merguellil depuis 2008 (plaine du Kairouannais) en Tunisie,
- et monte un projet dans le bassin versant de l’Oronte (périmètres au N et S d’Homs) en Syrie.

Compte tenu de la multiplicité des échelles de travail et de la diversité des acteurs intervenant dans la gestion de l’eau, les projets mis en œuvre dans le cadre du projet SudMed du CESBIO associent des partenaires de nature très diverse dans une démarche de co-construction, co-financement, co-conduite et co-évaluation :
- Partenaires de recherche finalisée internationaux (ex : ACSAD - Arab Center for the Studies of Arid Zones and Dry Lands – Damas, Syrie) et nationaux (ex : Direction de la Météorologie Nationale – Casablanca, Maroc)
- Universités ou Instituts (ex : INAT - Institut National d’Agronomie de Tunisie – Tunis, Tunisie)
- Organismes gestionnaires locaux (ex : ORMVAH - Office Régional de Mise en Valeur Agricole du Haouz, Marrakech, Maroc).

C’est dans ce contexte général que s’articulent les trois axes de recherche que je développe, et qui sont résumés ci-dessous (1.1.1) : la modélisation hydrologique, la spatialisation des modèles incluant la prise en compte des hétérogénéités, et enfin l’assimilation des données in-situ et de télédétection. Ces trois axes de recherche répondent à des préoccupations sociétales qui s’expriment différemment selon les écohydro systèmes que l’on cherche à décrire. Ces systèmes et les enjeux sociétaux associés sont présentés à la suite des axes de recherche (1.1.2) et sont au nombre de trois : les zones de végétation naturelle semi-aride (essentiellement des zones de parcours), les périmètres irrigués des grandes plaines alluviales et les bassins versants de taille moyenne. Enfin, les outils de recherche expérimentaux ou de modélisation numérique qui sont mis en place ou développés pour ces trois axes et ces trois systèmes sont décrits (1.1.3) avant le tableau récapitulatif associant axes, systèmes et outils.

1.1.1 Trois axes de recherche

1- la modélisation des différentes composantes du cycle de l’eau, et notamment les composantes liées aux échanges d’eau et d’énergie dans le continuum sol-plante-atmosphère en contexte semi-aride. Dans ce cadre, deux questions scientifiques complémentaires sont posées:
 a) « comment coupler les modèles qui représentent les différents processus hydrologiques élémentaires afin de simuler le fonctionnement intégré du Bassin Versant ? » ; ceci concerne essentiellement le lien entre les échanges "verticaux" de masse et d’énergie, décrits par les modèles d’échange sol-végétation-atmosphère (SVATs) et les redistributions latérales sous condition de relief, décrites par les modèles hydrologiques "pluie-débit".
 b) « quel est le degré de complexité requis pour décrire correctement chacun des processus clefs contrôlant les flux hydriques ? ».
2- la prise en compte des hétérogénéités, la spatialisation des processus hydrologiques, et les changements d'échelle; avec comme question corollaire « de quelle façon, le degré de complexité associé à chacun des processus pertinents, varie-t-il en fonction de l'échelle de temps et d'espace à considérer et en particulier pour ce qui concerne le fonctionnement dynamique du couvert végétal ? ».

3- l'assimilation de données in-situ ou de télédétection dans les modèles de fonctionnement de la surface; avec comme question corollaire: « quelle stratégie développer afin d'utiliser les données spatiales multi-spectrales et multi-temporelles pour renseigner et contraindre les modèles de surface ? »

1.1.2. Trois zones d'intérêt

Ces différents axes de recherche sont développés pour trois zones ou domaines d'intérêt pour lesquelles les questions scientifiques générales posées ci-dessus sont complétées ou affinées par des demandessectoriales très différentes:

1- Les zones de végétation naturelle en milieu semi-arde:

Au cours de ma thèse (projets SALSA en nord du Mexique et "regional evaporation project" au Sud Est de l’Australie, Kalma and Boulet, 1998), et durant les deux années qui précèdent mon départ au Maroc dans le cadre du projet SudMed, je me suis essentiellement intéressé à la problématique de la description des échanges d'eau et d'énergie dans le cas des couverts naturels épars en zone aride, dans un contexte général de conservation de ces écosystèmes. Pour ces couverts, une large portion de sol nu interagit directement avec l'atmosphère, reçoit généralement l'intégralité du rayonnement incident, et participe à la modification du microclimat autour de la plante isolée (effet de « micro-oasis ») qui augmente la transpiration potentielle de la plante. Ces effets sont peu pris en compte dans les schémas de type SVAT qui sont souvent monodimensionnels. Cela a conduit à la construction d'une méthodologie de traitement des hétérogénéités (Boulet et al., 1999) ainsi qu'à la construction d’un modèle SVAT simple adapté aux zones arides (Boulet et al., 2000).

2- Les zones agricoles en milieu semi-arde:

L’enjeu principal pour ces zones est d’optimiser la conduite de l’irrigation. Pour ce faire, les modèles généralement construits pour les milieux naturels doivent être adaptés pour tenir compte des différents parcours techniques et conditions agronomiques d’exploitation des parcelles agricoles. Dans ces zones, l’irrigation se fait majoritairement de façon gravitaire, ce qui pose de nombreux problèmes de gestion de l’eau: excès d’apport localisé, pertes par évaporation et drainage, et risque de sécheresse car la dotation en eau est généralement inférieure au besoin total (gestion selon l’offre plutôt que selon la demande).

Trois questions, pertinentes du point de vue du l’utilisation rationnelle des ressources, sont posées au cours du projet SudMed:
- Comment obtenir une meilleure estimation des besoins en eau des cultures tout au long de l’année ? (i.e. comment mieux estimer la dotation globale d’irrigation par type de culture ?)
- Quelle part de l’eau d’irrigation gravitaire perdue par drainage profond (perte agronomique) et évaporation directe du sol nu (perte agronomique et hydrologique) est indisponible pour la plante ?
- Comment mieux planifier les apports au cours de la saison agricole ? (i.e. gérer la demande plutôt que l’offre)

Une quatrième question se pose dans le cas de la plaine semi-arde du Haouz (région de Marrakech, Maroc): est-il possible, en absence de données fiables, d’estimer le volume irrigué à partir des pompages illégaux de la plaine, qui mettent en péril la durabilité de la ressource phréatique ?
Dans tous les cas, les réponses formulées se basent sur les outils de modélisation/observation spatialisables existants ou développés ci-après, en insistant sur leur capacité à simuler et détecter le stress hydrique, mais aussi à dissocier les besoins stricts de la plante (transpiration) des pertes par évaporation ou drainage profond.

3- Les bassins versants semi-arides :

L’enjeu est bien souvent non seulement d’établir un bilan hydrique complet du Bassin Versant (BV), mais aussi des différents sous-bassins, en tenant compte de la manière la plus réaliste possible des différents processus hydrologiques en son sein. Ceci conduit à deux approches distinctes en fonction du niveau d’hétérogénéité du bassin:

- Dans le cas d’un BV relativement homogène: les travaux portent essentiellement sur le couplage entre les transferts hydriques verticaux et latéraux afin d’établir un modèle capable de simuler l’intégralité du cycle de l’eau de manière simple mais explicitement distribuée, lorsque le nombre de processus hydrologiques pertinents et de classe d’occupation du sol n’est pas trop important; dans ce cas, la distribution de l’humidité du sol et la reproduction des débits sont deux critères pertinents d’évaluation d’un tel modèle couplé. Ce travail a été essentiellement conduit pour des petits bassins versants d’élage extensif au SE de l’Australie, mais aussi dans le cadre de la thèse de Jennifer Pellé pour un petit bassin versant agricole du SO de la France, et le BV de Vogué au centre de la France (Pellé, 2002).
- Dans le cas d’un BV très hétérogène: la variabilité bio-hydro-pédo-climatique, ainsi que le nombre de processus hydrologiques en présence, rendent l’évaluation du bilan hydrique à l’échelle du bassin très difficile; il s’agit donc d’employer une estimation simple de chacun des processus dominants, et de vérifier la pertinence et le réalisme des hypothèses de spatialisation, thème largement abordé dans le contexte du programme "Prediction in Ungauged Basins" (Sivapalan et al., 2003). Ce problème se pose de manière aiguë pour le Haut-Atlas marocain du projet SudMed, qui combine les influences nivales et pluviales convectives sur le fonctionnement hydrologique et la dynamique de la recharge de la nappe du Haouz à l’aval de ces bassins.

1.1.3. Trois outils de recherche

Afin de répondre aux questions posées au paragraphe 1.1.1., et dans le contexte applicatif présenté en ouverture du chapitre, trois outils de recherche sont associés: la modélisation, l’expérimentation et les développements méthodologiques autour de l’assimilation des données. Dans le cadre des projets SudMed et IRRIMED (www.irrimed.org) notamment, nous cherchons à caler des modèles mécanistiques pour les couverts dominants de la zone d’intérêt. Ces modèles simulent une large gamme de composantes, sinon toutes, du bilan d’énergie et du bilan hydrique à l’échelle du couvert. En confrontant l’ensemble des mesures effectuées sur le terrain aux sorties de ces modèles complexes, on espère caler ces derniers de façon réaliste (i.e. en conservant la bonne représentation de l’ensemble des composantes) et ensuite se servir de ces modèles pour tester des modèles plus simples, donc plus faciles à spatialiser, et ce dans des conditions plus contrastées que celles qui prévalent durant les expérimentations («benchmarking»). Cette démarche est utilisée de façon quasi-systématique dans nos travaux de modélisation, et nous en présenterons les avantages mais aussi les limites.

1- Les dispositifs expérimentaux mis en place:

Ils associent des mesures en continu acquises par des stations automatiques, et des mesures effectuées de façon discrète dans le temps. Pour les mesures automatiques, citons l’ensemble des composantes du bilan radiatif et des autres termes du bilan d’énergie (flux turbulents, flux de chaleur...
dans le sol), le profil d'humidité et de températures dans le sol, des mesures de flux de sève (couverts arborés) et la hauteur du manteau neigeux (Figure 1); pour les mesures ponctuelles, citons le suivi de l'humidité par mesure gravimétrique, la caractérisation des sols par test infiltrométrique, ou le suivi de l'indice foliaire et du taux de couvert végétal par photo hémisphérique et mesures de réflectance dans les domaines optique et proche infra-rouge. Les couverts suivis de 2002 à 2008 au cours du projet SudMed (Figure 1, Tableau 1) comprennent deux parcelles d'olivier, deux d'oranger, et quatre parcelles de blé. Durant ces expérimentations, nous avons mis en place un protocole de mesures en physique du sol, ainsi que le suivi des températures de surface par radiométrie Infra-Rouge Thermique (calibration, effets directionnels etc, voir plus loin). Pour le suivi de l'enneigement et son impact sur le régime hydrologique, une station nivale comportant une sonde de hauteur de neige, ainsi qu'un réseau de pluviomètres et de pluviographes, ont été installés dans le bassin versant de la Rhéraya dans le Haut Atlas marocain (voir Figure 2 pour la localisation des sites).

Figure 1: Photos des différents sites de mesure du projet SudMed.
En haut à gauche, station nivale de l’Oukaimedem ; en haut à droite : site radiométrie périmètre R3 parcelle B130 ; au milieu à gauche : installation de la fosse sol site Agdal ; au milieu à droite : station météo site Agdal ; en bas à droite : mesures de fluctuations turbulentes sur le périmètre R3 parcelle B27 ; en bas à droite : scintillométrie sur le site de l’Agdal.

Figure 2 : Dispositif expérimental du BV du Tensift (demande de SOERE déposée par L. Jarlan et M. Le Page)

<table>
<thead>
<tr>
<th>Culture</th>
<th>Site</th>
<th>Irrigation</th>
<th>Spécificités</th>
<th>Période</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blé dur</td>
<td>R3</td>
<td>Gravitaire</td>
<td>bloc 27</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gravitaire</td>
<td>bloc 111</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gravitaire</td>
<td>bloc 123</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gravitaire</td>
<td></td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gravitaire</td>
<td></td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goutte à Goutte</td>
<td></td>
<td>2008</td>
</tr>
<tr>
<td>Oranger</td>
<td>Saada</td>
<td>Goutte à Goutte</td>
<td>hauteur uniforme, espacés 5x3m</td>
<td>2004-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gravitaire</td>
<td>hauteur hétérogène, espacés 7x7m</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>Agafay</td>
<td>Goutte à Goutte</td>
<td>hauteur=1,5m, espacés 4x6m</td>
<td>2006-présent</td>
</tr>
<tr>
<td>Olivier</td>
<td>Agdal</td>
<td>Goutte à Goutte</td>
<td>oliviers 250 ans, espacés 6x6m</td>
<td>2003-04</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>Goutte à Goutte</td>
<td>jeunes oliviers</td>
<td>2006-présent</td>
</tr>
</tbody>
</table>

Tableau 1 : Caractéristiques agronomiques des sites de culture irriguée de la plaine du Haouz (BV Tensift)

2- Les modèles utilisés ou développés :

Ces modèles sont de cinq types :

- **Les modèles SVATs** qui décrivent les échanges d’eau et d’énergie dans le continuum sol-plante-atmosphère : ces modèles sont classés (Figure 3) selon leur niveau de complexité, l’importance
de la physique qu’ils incorporent, et leur échelle typique d’application. Bien évidemment, les modèles les plus complexes décrivent les interactions entre processus de façon relativement mécaniste et nécessitent un grand nombre d’entrées rarement disponibles à l’échelle régionale. Pour des échelles et niveaux de complexité intermédiaires, SVATsimple est un modèle simple à base physique, que j’ai développé initialement pour les couverts bas épars (Boulet et al., 2000) puis généralisé à tous les types de couverts (Boulet et al., 2004) ; il demeure relativement simple puisqu’il traite l’interface sol-plante-atmosphère à l’aide de l’approximation « big leaf » (Monteith, 1981) et calcule le bilan hydrique pour un seul réservoir ; en revanche, les équations qui gouvernent les échanges d’eau et d’énergie sont toutes basées sur la physique des processus. SiSPAT (Braud, 1995) est un modèle mécaniste mono-dimensionnel vertical complexe, qui est plutôt considéré comme un outil de référence et a été utilisé comme tel durant ma thèse et pour les activités de « benchmarking », c’est-à-dire de modification de modèles simples en fonction des préconisations du modèle complexe. ICARE (Gentine et al., 2007) est un modèle modulaire développé dans le cadre de SudMed par Pierre Gentine afin de disposer d’un modèle capable d’assimiler des températures de surface, sans pour autant être aussi complexe que SiSPAT (transferts de masse et de chaleur dans le sol non couplés, sol décrit comme un seul horizon homogène...). Il est particulièrement adapté à la spatialisation par « tiles » ou « patchs », c’est-à-dire en colonnes mono-dimensionnelles indépendantes (approche « multi-1D »). Enfin nous nous intéressons dans le cadre des projets SudMed et IRRIMED à la méthode FAO56 (Allen, 1998) qui constitue le niveau le plus simple de description des échanges sol-plant-atmosphère, utilisée de façon opérationnelle par la plupart des gestionnaires de l’eau agricole de la planète, et qui pondère une évapotranspiration de référence (celle d’un gazon ras bien irrigué soumis aux conditions climatiques actuelles) par des coefficients culturaux qui synthétisent la différence de fonctionnement bioclimatique entre le gazon et la culture en question, mais aussi les différents stress environnementaux.

- **Les modèles d’accumulation et de fonte des neiges**: il s’agit du module « neige » ISBA_ES (Boone and Etchevers, 2001) et des nombreuses formulations empiriques paramétrées en fonction de la température de l’air (modèles degré-jour).

- **Les modèles hydrologiques** de bassin versant: ce sont soit des modèles de type « pluie-débit » tels que TOPMODEL (Beven, 1993), dans sa version améliorée TOPSIMPL du LTHE (Saulnier and Datin, 2004), soit des modèles décrivant l’intégralité du cycle hydrologique, tels que SWAT, modèle distribué semi-empirique de l’USDA (Arnold and Fohrer, 2005), qui présente à la fois l’avantage d’être exhaustif dans les processus qu’il décrit (fonte des neiges, compartiment profond etc), tout en restant très simple dans cette description ; nous utilisons également le modèle conceptuel global GR4J (Perrin et al., 2003) qui décrit les principaux termes du bilan hydrologique, et le modèle « pluie/neige-débit » autorégressif semi-distribué SRM (Martinec, 1985).

- **Les modèles de fonctionnement de la végétation** naturelle ou cultivée : ils simulent l’évolution de la biomasse, du taux de couverture végétal et de l’indice foliaire à partir du bilan carboné. Nous utilisons ici des modèles simples décrivant l’évolution de la biomasse totale en un terme de croissance et un terme de sénescence, basés sur l’efficience de conversion photosynthétique, tels que les modèles SAFYE (Duchemin et al., 2008) ou STEP (Mougin et al., 1995).

- **Les modèles de transfert radiatif**: ils permettent de simuler, à partir de variables d’état biophysiques (indice de couverture foliaire, teneur en eau, température du sol et de la plante...) les variables de télédétection correspondantes (réflectances, températures radiatives, émissivité micro-onde...) observables par satellite (ex. DART, Gastellu-Etchegorry et al., 2004). Contrairement aux modèles précédents, ces modèles ne simulent pas l’évolution de l’état du système à partir d’un état initial.
Figure 3: Classification des différents modèles SVAT développés ou utilisés pour l’Axe 1

Afin de répondre aux objectifs de l’Axe 1 de recherche, les différentes stratégies de modélisation sont comparées de manière à identifier celles qui présentent le meilleur compromis entre le niveau de complexité utilisé et la précision obtenue pour un objectif donné; dans le cas de l’objectif particulier du calcul de l’évapotranspiration journalière, ce travail fait l’objet du Work Package 3 d’IRRIMED, dont j’étais le coordinateur. Le projet Européen IRRIMED a notamment pour objectif de produire des coefficients culturaux adaptés aux milieux du pourtour méditerranéen ; bien-sûr une revue exhaustive de tous les couverts présents dans cette région est impossible, cependant les principaux couverts, notamment arborés, ont été suivis expérimentalement. On montre que généralement les coefficients culturaux donnés par la FAO sont réalistes, bien que souvent surestimés.

3- Les méthodologies d’assimilation utilisées ou développés:

Etant donné qu’aucun des modèles ci-dessus ne simule de façon satisfaisante les différentes composantes du cycle de l’eau, il convient de contraindre les sorties de ces modèles au moyen des observations satellitaires ou in-situ. A cette fin, plusieurs méthodes dites d’assimilation des données sont utilisées au cours de mes recherches, qui toutes visent à réduire au moyen d’ajustement de variables ou de paramètres la distance entre la variable d’observation simulée par le modèle de fonctionnement de la surface (modèles SVAT, modèles de croissance de la végétation ou modèle de fonte des neiges) couplé ou non à un modèle d’observation (modèle de transfert radiatif par exemple) et la variable d’observation mesurée in-situ ou par satellite (température de surface ou combinaison de réflectances dans les domaines optique et proche-infra-rouge par exemple). Parmi ces méthodes, on peut définir :

- **le forçage**, qui consiste à alimenter le modèle avec des données de télédétection ou bien à ajuster à un instant donné l’état hydrique, les flux ou le stade de développement foliaire (méthode appelée également « inversion »), sans tenir compte de sa conformité avec la chronique d’évolution de ces états;
- **la calibration**, qui consiste à ajuster sur une période donnée les paramètres constants du modèle de fonctionnement, mais qui pose le problème de la validité des valeurs obtenues en dehors de la période d'apprentissage;
- **le contrôle ou l'estimation optimal(e)**, qui consiste à ajuster conjointement, à un instant donné (estimation) ou pour une période donnée (contrôle), les variables d'état et les paramètres du modèle de fonctionnement, en conservant la compatibilité de ce réajustement avec la chronique d'évolution de ces variables.

Historiquement, ces méthodes ont été essentiellement développées pour la météorologie et l'océanographie opérationnelles; au cours de ces dernières années, j'ai testé ces différentes méthodes dans le contexte particulier des modèles éco- ou agro- hydrologiques, et proposé de combiner l'ajustement des paramètres (une des sources d'incertitudes les plus importantes pour les modèles éco/agrohydrologiques) et celui des variables d'état (Boulet et al., 2002).

En résumé, ces recherches s'inscrivent dans le champ de l'**Hydrologie Spatiale**, c'est-à-dire de la recherche de méthodes d'utilisation optimale des données de télédétection pour l'analyse et la prévision des différentes composantes du cycle de l'eau.

Le document est organisé en 5 chapitres. Ce chapitre introductif se conclut par un tableau récapitulatif des différents thèmes de recherche abordés au cours de ce mémoire. Le chapitre 2 présente les travaux en modélisation hydrologique pour construire des outils adaptés à la spatialisation et à l'assimilation des données de télédétection. Le chapitre 3 s'intéresse à la spatialisation des processus hydrologiques et aux problèmes de transfert d'échelle, et développe certains aspects de la désagrégation imposée par l'utilisation des données de télédétection basse résolution. Ceci nous amène naturellement à aborder l’apport de l’assimilation des données de la télédétection dans les modèles hydrologiques (chapitre 4). Le chapitre 5 présente les perspectives de recherche en hydrologie spatiale autour du développement de Systèmes d’Observation. Il présente également les nouvelles opportunités liées aux missions spatiales lancées récemment ou en préparation. Le Chapitre 6 conclue ce mémoire.
1.2. Tableau récapitulatif axes/domaines

<table>
<thead>
<tr>
<th>Thème de recherche</th>
<th>ZONE 1 Le périmètre irrigué semi-aride</th>
<th>ZONE 2 L'écosystème naturel semi-aride</th>
<th>ZONE 3 Le bassin versant semi-aride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projet/ Cadre</td>
<td>Principales publications</td>
<td>Principales publications</td>
<td>Principales publications</td>
</tr>
<tr>
<td>AXE 1 Modélisation éco- et agro-hydrologique</td>
<td>Généralisation du modèle SVATsimple pour les couverts de zone racinaire profonde</td>
<td>Développement et test du modèle SVATsimple à partir de la description de l'évaporation en deux phases successives</td>
<td>Intercomparaison de modèles de fontes des neiges de complexité croissante: application aux données de l'Oukaimedem (Atlas marocain) Couplage SVATsimple/TOPSIMPL</td>
</tr>
<tr>
<td></td>
<td>Projets SUDMED et IRRIMED WP3</td>
<td>Boulet et al., 2004</td>
<td>Boulet et al., 2000</td>
</tr>
<tr>
<td>AXE 2 Changement d’échelle, spatialisation et traitement des hétérogénéités</td>
<td>Spatialisation des modèles de fonctionnement de la surface continentale (modèles SVAT et modèles de croissance de la végétation)</td>
<td>Comparaison de schémas à 2 ou 3 sources pour le cas des couverts éparis</td>
<td>Application du modèle SWAT au Bassin Versant de la Rhéaya; utilisation des données de télédétection haute/basse résolution pour le suivi de la surface enneigée du Haut Atlas</td>
</tr>
<tr>
<td></td>
<td>Projets SUDMED IRRIMED WP4 PLEIADERS Thèse Jonas Chirouze</td>
<td>Duchemin et al., 2006 Duchemin et al., 2008</td>
<td>Programme SALSA</td>
</tr>
<tr>
<td>AXE 3 Assimilation des données in-situ ou de la télédétection</td>
<td>Détection et suivi du stress hydrique Signature thermique directionnelle Elaboration d’un « test d’évaporation »</td>
<td>Assimilation d’une chronique de NDVI et de température de surface dans un modèle de fonctionnement de la végétation herbacée Développement d’un test d’évaporation</td>
<td>Assimilation d’une chronique de couverture de neige acquise par télédétection optique dans les modèles hydrologiques SWAT et SRM Assimilation de l’humidité du sol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 2: Thèmes de recherche (en gras = thèmes principaux), les projets dans lesquels ils s’inscrivent, et les principales publications qui en découlent.
2. Travaux de modélisation en hydrologie spatiale

Lorsque l’on parle de gestion de l’eau, on évoque principalement l’évaluation des quantités stockées (sous sol, sol, neige, réservoirs) et des flux (précipitations, évapotranspiration, écoulements de surface et de subsurface, échanges avec les zones saturées et les nappes). Tandis que certains termes sont estimés essentiellement par des réseaux d’observations in-situ ou satellites (c’est le cas par exemple des précipitations car les modèles simulent pour l’instant assez mal ce terme à l’échelle journalière), la plupart des termes du bilan hydrique sont simulés par des modèles alimentés ou contraints par des observations.

En termes de gestion comme d’outil, nous pouvons distinguer trois grands types d’échelle :
- **L’échelle locale** [de o(1m²) à o(1km²)], s’étendant du point à la parcelle: c’est l’échelle pour laquelle on peut tester les modèles écohydrologiques les plus complexes (généralement des modèles SVAT possédant ou non un module de végétation interactive) au moyen d’une stratégie expérimentale adaptée, mais c’est aussi à cette échelle que l’agriculteur connaît le mieux le bilan hydrique. En effet, c’est lui qui gère les intrants et peut détecter visuellement les premiers effets d’un stress environnemental. A cette échelle, l’un des objectifs importants de la bonne gestion de l’eau est de déterminer ce qui est plus difficilement observable ou quantifiable à cette échelle : les premiers effets du stress hydrique avant qu’ils ne soient observables à l’œil nu, la partition transpiration/évaporation du sol, le drainage profond...
- **L’échelle du petit bassin versant, du périmètre irrigué et, plus généralement du paysage** [de o(10km²) à o(100km²)] : c’est l’échelle de décision pour les coopératives agricoles etc ; à cette échelle, il est difficile d’avoir un dispositif d’observation exhaustif du cycle de l’eau, et c’est à cette échelle que modèle, observations in-situ (pas forcément acquises en routine) et observation de télédétection sont les plus complémentaires. Les modèles intégrés disponibles à cette échelle, même s’ils décrivent de manière exhaustive l’ensemble des processus hydrologiques qui peuvent opérer à cette échelle (le modèle SWAT en est un bon exemple), négligent le plus souvent les interactions entre les différentes « tuiles » ou mailles élémentaires qui génèrent du ruissellement de surface ou du drainage latéral de subsurface. Cette approche « multi-1D » est compatible avec les images de télédétection et adaptée à des paysages que l’on peut représenter comme des damiers sans topographie a pour l’instant été favorisée. L’approche « multi-1D » pour les échanges de masse et d’énergie (modèle SVAT essentiellement) néglige les interactions (actions ET rétroactions) entre deux unités paysagères (deux « tuiles ») contiguës. Elle néglige donc les phénomènes d’advection au sein du couvert ou d’une parcelle à une autre, ainsi que les écoulements de surface et de subsurface. Elle néglige aussi les discontinuités et hétérogénéités « locales » (haies, terrasses, fossés etc) qui peuvent pourtant avoir un impact sur la redistribution latérale de l’humidité ou du carbone. Pour des bilans régionaux, ceci est peut-être légitime, mais dès lors que l’on s’intéresse au fonctionnement des écoagrosystèmes il faut pouvoir justifier cette hypothèse en développant des stratégies d’observation et de modélisation explicitement tridimensionnels (3D) et incluant les interactions entre chacunes des cellules ou mailles du paysage. Applanir ces développements 3D pour des échelles emboitées de plus en plus grandes (pour l’hydrologie : o(100m²) > o(10000km²): versant – petit bassin versant – bassin fluvial) nous permettra d’évaluer l’échelle à partir de laquelle l’impact de ces interactions devient négligeable.
- **L’échelle du grand bassin versant régional** [de o(1000km²) à o(10000km²)]: à cette échelle, il y a peu de mesures in-situ hormis quelques réseaux très éparés de stations météorologiques ; à cette échelle, les données de télédétection basse résolution sont très intéressantes (en terme d’extension spatiale et de résolution); les modèles utilisés sont souvent soit des modèles globaux assez simples conceptuels, soit des SVATs appliqués avec une maille très grossière (et donc une nécessaire application de méthodes de transfert d’échelle sur les paramètres d’entrée) couplés à des modèles hydrologiques et hydrogéologiques assez frustes, privilégiant légitimement la
description du routage en rivière plutôt que les redistributions latérales de surface et de subsurface (cf. modèles utilisés en météorologie : SIM (Habets et al., 1999), Orchidee (Krinner et al., 2005)…).

Dans tous les cas, l’utilisation conjointe de données de télédétection, notamment basse résolution, ou de sorties non désagrégées de modèles climatiques, peut poser problème : l’observable de télédétection peut être de résolution plus grossière que la maille de calcul du modèle, ou alors le modèle peut ne pas pouvoir simuler les variables d’état correspondant aux observables de télédétection (par exemple une température de surface). Il convient donc de choisir avec soin le modèle à utiliser en fonction des données assimilables disponibles. Cette étape est un préalable à la construction d’un système d’observation.

Notons également que dans le cas des bassins versants montagneux, la variété des processus mis en jeu peut être très large, et il est difficile de trouver ou de construire un modèle exhaustif. Le premier candidat retenu, SWAT, était suffisamment simple et exhaustif pour être implémenté au Maroc, il n’a donc pas été modifié par la suite et n’entraînera donc pas dans la partie « modélisation » mais dans la partie « spatialisation ». C’est également le cas du modèle SRM. Nous nous intéressons dans ce qui suit à des bassins versants moins complexes (occupation du sol, géomorphologie, climat) où l’on cherche à modéliser le couplage entre les échanges verticaux et latéraux de l’humidité.

2.1. Couplage 1D – redistribution latérale

Historiquement, les modèles hydrologiques de crue sont des modèles événementiels, c’est à dire qu’ils sont appliqués pluie par pluie ; dans ce cas, les transferts verticaux ne sont décrits que de façon sommaire. L’état hydrique initial du bassin est alors soit considéré comme un paramètre à caler pour chaque événement pluvieux, soit évalué de manière grossière au moyen d’une relation simple utilisant l’évaporation potentielle. D’un autre côté, les modèles de Transferts Sol-Végétation-Atmosphère (SVAT) simulent en continu les échanges verticaux d’eau et d’énergie à l’interface du sol, de la végétation et de la première couche atmosphérique. Ces modèles ignorent en revanche le plus souvent les redistributions latérales. Afin de disposer d’outils permettant de décrire l’intégralité du cycle de l’eau, les deux types de modèles doivent être couplés (Figure 4). Compte tenu de la difficulté d’observer et de décrire les écoulements latéraux de subsurface, qui n’ont pas seulement lieu à l’interface entre les couches perméables et la roche mère imperméable, mais profitent souvent de discontinuités (macropores, failles etc) localisées, l’approche choisie par la plupart des solutions de couplage est de type conceptuelle. Deux formalismes sont largement utilisés : VIC (Wood et al., 1990) et TOPMODEL (Beven, 1993). Le premier suppose que la répartition de l’eau au sein du bassin versant suit une répartition statistique de réservoirs de taille variable, les plus petits générant du ruissellement par débordement. Il a déjà été appliqué avec succès, notamment dans le cas de bassins australiens de sol « duplex » (strate perméable sur strate argileuse peu perméable). Le second suppose que le gradient hydraulique responsable de l’écoulement de subsurface est parallèle à la topographie, et dépend de l’aire drainée calculée en tout point du domaine. En supposant une recharge et une transmissivité homogène au sein du bassin, le débit à l’extatoire, la redistribution de l’eau et la relation entre l’état hydrique local et le bilan hydrique global du bassin dépendent uniquement d’un indice topographique (calculé à partir du modèle numérique de terrain) et des valeurs globales de recharge et de transmissivité.
Dans le cadre de la préparation à la mission SMOS (Kerr et al., 2001), qui nous fournit une estimation « globale » (intégration sur des pixels d’environ 40 km de côté et couverture globale) de l’humidité de surface, ce lien entre état hydrique local et état hydrique « global » du bassin est particulièrement intéressant, car il nous permet de désagréger très simplement l’estimation de l’humidité intégrée à l'échelle du bassin versant (obtenue par exemple par assimilation de l’humidité de surface dans un modèle SVAT appliqué à l’échelle du pixel SMOS) vers une échelle locale plus intéressante pour les applications hydrologiques.

Compte tenu du fait que pour les petits bassins versants australiens étudiés, le processus hydrologique le plus pertinent est le ruissellement sur surfaces contributives, l’approche adoptée était d’utiliser le modèle SVATsimple à un réservoir ou le schéma de surface ISBA original à deux couches (Noilhan and Planton, 1989) et un réservoir pour modéliser les flux verticaux (infiltration/évaporation totale), couplé au modèle hydrologique TOPMODEL sans routage. Ce dernier simule les écoulements latéraux en surface et dans la couche superficielle du sol en fonction de la topographie.

L’interprétation de la variable d’état du modèle hydrologique TOPMODEL, le déficit de saturation, est source d’ambiguïté. En particulier, pour des sols peu profonds, on ne sait pas si les écoulements latéraux de subsurface sont liés au développement d’une nappe perchée (zone saturée) ou d’une activation de chemins préférentiels de l’eau résultant de discontinuités ou d’hétérogénéités pédologiques (macropores, micro-faillies, ...). De nombreuses interprétations “libres” de cette variable abondent dans la littérature. Dans ce contexte, deux versions du couplage (notée a et b respectivement) ont été développées, chacune représentant au mieux les deux types d’écoulements latéraux précités. Dans la première (a) le déficit est interprété comme un niveau global d’humidité, tandis qu’il est interprété comme profondeur d’une zone saturée dans la seconde (b). Les deux versions ont été comparées au cours de la thèse de Jennifer Pellenq. Les résultats pour le bassin

Figure 4: Schéma de couplage SVAT-Hydrologie
versant d'Auradé (328 ha) et de Voguë (635 km²) ont montré que les deux versions donnent des résultats comparables assez satisfaisants. Pour Voguë, les efficiences trouvées pour la version (a) sont légèrement supérieures mais la version (b) reproduit mieux les débits en phase de récession. La partition ruissellement/drainage est sensiblement différente pour les deux modèles et le déficit moyen simulé par (b) est toujours inférieur d'environ 100 mm à celui simulé par (a). La version (b) utilise la formulation initiale qui autorise le déficit à descendre indéfiniment dans le sol ce qui constitue une hypothèse simplificatrice peu réaliste puisque la profondeur de la zone saturée est le plus souvent limitée par la profondeur de la roche mère imperméable. Cette hypothèse aboutit également à une surestimation du déficit (en particulier elle autorise des déficits négatifs). La version (a) utilise une formulation corrigée qui permet de s'affranchir de cette hypothèse et permet également de fixer un déficit maximum en dessus duquel le sol est considéré comme sec.

En effet, quel que soit l'interprétation du déficit maximum, on peut penser que lorsque les parties les plus hautes du bassin sont suffisamment sèches, il n'y a plus continuité des nappes perchées depuis la crête vers l'exutoire, ou que les chemins préférentiels de l'eau dans le sol ne possèdent plus la charge hydraulique nécessaire pour conduire l'eau depuis la crête vers l'exutoire. Cette déconnexion des différents points du bassin semble d'ailleurs d'autant plus importante à prendre en compte que le bassin versant est important. Même s'il semble peu réaliste d'appliquer TOPMODEL à l'échelle des grands bassins fluviaux (bien que cela ait été fait, et ce dans le but unique de décrire le plus sommairement possible les redistributions latérales), on peut imaginer une application à l'échelle des bassins versants de taille moyenne (de l'ordre de 100 km²). A l'origine, TOPMODEL suppose que les redistributions latérales sont calculées pour tout le bassin avec la même formulation. G.-M. Saulnier a pu corriger ce biais dans TOPMODEL (Saulnier and Datin, 2004) en recalculant les flux sur la partie active du bassin, c'est-à-dire sur la zone de forte variation du déficit, en excluant ainsi les déficits nuls (c'est à dire la zone saturée). Dans le même esprit, j'ai proposé de limiter la zone active du point de vue des transferts latéraux à une zone de déficit intermédiaire entre le déficit nul et un déficit maximal à définir. Cela complexifie le recalcul des déficits et du débit (Tableau 3), sans affecter la philosophie du modèle. Puisque le modèle est une succession d'états quasi-stationnaires, le calcul des déficits et du débit se font à la fin de chaque pas de temps du modèle SVAT (c'est-à-dire après le calcul du ruissellement de surface par les deux mécanismes, Dunne (Dunne, 1983) et Horton (Horton, 1933), et de l'évapotranspiration). Il convient de noter que la dernière équation du tableau permet, pour les modèles événementiels de type TOPSIMPL, d'initialiser l'état hydrique du bassin à partir du débit de base.

Le modèle couplé SVATSimple_TOPMODEL (version a) a été appliqué à deux petits bassins versants australiens (Lockyersleigh, 27 km², et Nerigunda, 6 ha) dans le but de décrire la variabilité spatiale de l'humidité de surface et de l'humidité de la zone racinaire, puis d'assimiler la première dans le modèle couplé afin de restituer la variabilité spatiale de la seconde. Compte tenu du caractère éphémère de ces cours d'eau, les performances du modèle en termes de prévision des débits en continu ont d'abord été évaluées sur un bassin versant de zone tempérée et de taille moyenne, le BV de Voguë. Le modèle couplé ISBA_TOPMODEL a été appliqué à ce bassin versant par Jennifer Pellenq au cours de sa thèse. Quatorze années de données de débit journalier étaient disponibles (Figure 5). L'efficacité de Nash calculé entre les débits observés et simulés par ISBA_TOPMODEL était de 0,76. Les sorties du modèle ISBA_TOPMODEL ont également été comparées à celles de TOPSIMPL appliqué en continu (modèle très simple d'évolution de l'humidité pendant les épisodes de récession) et de TOPSIMPL réinitialisé en début de crue (déficit initial calculé à partir du débit de base observé). Cette comparaison a été effectuée pour les 24 crues majeures (Figure 6). Dans 80% des cas, ISBA_TOPMODEL est plus performant que TOPSIMPL appliqué en continu (Figure 7). Cela justifie la pertinence d'un modèle d'évolution de la zone non saturée tel qu'ISBA. En revanche, dans 60% des cas, TOPSIMPL réinitialisé est plus performant qu'ISBA_TOPMODEL, ce qui montre l'importance d'une bonne estimation de l'état hydrique initial du bassin pour la simulation des crues. Ce dernier point justifierait l'intérêt d'assimiler des données de type SMOS pour estimer même grossièrement.
l’humidité de la zone non saturée en début de crue si l’on pouvait désagréger la donnée SMOS à une résolution plus fine compatible avec la longueur du versant par exemple.

FICHE 1: redistribution latérale de l’humidité selon TOPMODEL (tiré de Boulet et al., 2002)

La base conceptuelle de TOPMODEL utilisée ici est la suivante (Saulnier, 1996) :
- L’évolution du système peut être décrit comme une succession d’états stationnaires
- Le gradient hydraulique est proche de la pente de la surface du sol
- La recharge (ou drainage moyen des zones d’écoulement de subsurface) est uniforme
- La transmissivité T décroît avec la profondeur de façon exponentielle (avec comme facteur d’échelle m, en mètres)

Le déficit de saturation z pour toute aire élémentaire a est compris entre zéro (saturation) et une valeur maximale z_d que l’on peut associer à la profondeur de la roche mère ou tout du moins l’épaisseur de la zone la plus perméable latéralement. Le déficit de saturation moyen \bar{Z} se partage entre les trois zones de l’aire totale A du bassin :
- l’aire saturée (A_s)
- l’aire où les transferts latéraux sont importants ($A_s - A_d$)
- l’aire où la redistribution latérale de l’eau est négligeable (A_d)

La conservation du déficit total s’écrit alors :

$$A\bar{Z} = \int_0^A da + \int_{A_s}^{A-A_s-A_d} z(a) da + \int_{A_s}^{A_s} z_d$$

Tandis que l’hypothèse de stationnarité de TOPMODEL implique :

$$z(a) = -m\lambda(a) - m\ln(R) - m\ln(T_0)$$

où $\lambda(a)$ est l’indice topographique de l’aire élémentaire a et T_0 la transmissivité totale.

Si l’on exprime les indices topographiques limites λ_s et λ_d de l’aire saturée et de l’aire sans redistribution latérale (resp.) :

$$\begin{align*}
z_d &= -m\lambda_d + \text{cte} \\
0 &= -m\lambda_s + \text{cte}
\end{align*}$$

soit $\lambda_d = \lambda_s - z_d/m$ et

$$\bar{Z} = -m\hat{\lambda} + m\lambda_s$$

où, si f est la densité de probabilité de λ (représentée en général par une fonction Gamma à 3 paramètres) :

$$\lambda = \int_{\lambda_s-z_d/m}^{\lambda_d-z_d/m} uf(u) du / \int_{\lambda_s-z_d/m}^{\lambda_d-z_d/m} f(u) du$$

λ_s est alors solution de $z = \frac{A\bar{Z} - A_d z_d}{A - A_s - A_d}$ où \bar{Z} est déduit du bilan hydrique du bassin,

$$\begin{align*}
\frac{A}{A - A_s - A_d} &= \int_{\lambda_s-z_d/m}^{\lambda_s} f(u) du \\
\frac{A_d}{A - A_s - A_d} &= \int_{\lambda_d-z_d/m}^{\lambda_d} f(u) du
\end{align*}$$

Dès lors que λ_s est connu, le débit d’exfiltration de la nappe (ou de vidange du bassin) Q est alors :

$$Q = T_0 (A - A_s - A_d) e^{-\hat{\lambda}z_d/m}$$

Tableau 3: Fiche 1 : Adaptation de TOPMODEL au couplage avec les modèles SVAT
Figure 5: Performance d’ISBA-TOPMODEL à Vogüé (Pellenq, 2002)

Figure 6: Comparaison des débits simulés par IBA-TOPMODEL et TOPMODEL (Pellenq, 2002)
Figure 7: Histogramme des efficiencies des divers modèles pour 24 épisodes de pluie (Pellenq, 2002)

2.2. Simplification des schémas de surface

Dans les zones où les interactions entre éléments de paysage adjacents, et notamment la redistribution latérale de l’humidité, sont négligeables ou peuvent être traitées simplement sans avoir recours à un modèle hydrologique, une spatialisation du bilan hydrique en colonnes mono-dimensionnelles indépendantes (approche dite « multi-1D ») est appropriée. Afin de spatialiser les modèles SVAT en « multi-1D » à moindre coût, mais aussi de proposer un formalisme très proche de l’observable de télédétection (et notamment une seule température de surface), je me suis intéressé à la simplification du formalisme de résolution des bilans hydrique et énergétique qui sont le cœur de tout modèle SVAT. Pour simplifier, deux pistes ont été explorées :
- pour le bilan hydrique, traditionnellement résolu dans les modèles SVATs actuels par l’équation de Richards (Richards, 1931), il s’agissait de diminuer le pas de temps et d’espace de résolution des équations ; une résolution analytique de cette équation sous conditions limites et initiales particulières est à l’origine du modèle « SVATsimple » décrit ci-dessous.
- pour le bilan énergétique, un bilan mono-source permettant de conserver la notion de « température aérodynamique » est proposé pour ce que l’on appelle désormais le « kB¹ radiométrique » (Matsushima, 2005).

2.2.1. SVATsimple

A la suite du projet d’intercomparaison des schémas de surface PILPS (Henderson Sellers et al., 1995) les bilans hydriques des schémas de surface ont progressivement évolué vers le formalisme « force‐restore » (Deardorff, 1978) ou celui de Richards (Richards, 1931). Les modèles plus simples, généralement basés sur la représentation « mono-réservoir » ne sont plus guère utilisés autrement que pour spécifier une capacité de réservoir pour générer le ruissellement (approche VIC citée plus haut). Cependant, plusieurs activités (calibration, assimilation, spatialisation) particulièrement gourmandes en temps de calcul et en données d’entrée justifient de poursuivre le développement de modèles simples « analogues » aux modèles plus complexes. J’entends par « analogue » un modèle
basé sur les mêmes équations et utilisant les mêmes variables et paramètres que le modèle à base physique plus complexe (e.g. Richards) mais dont les sorties ne sont qu’une approximation des sorties du modèle complexe sous certaines hypothèses simplificatrices de conditions initiales et limites, ainsi que de discrétisation du schéma numérique. Je me suis attaché depuis plus de dix ans à développer et utiliser un de ces modèles « analogues » aux SVATs complexes, SVATsimple. L’histoire de SVATSimple commence en 1997 à la lecture d’un article de Guido Salvucci (Salvucci, 1997). Ce dernier propose une première simplification de l’équation de Richards en période de ressuyage (« interstorm ») sur le modèle de ce qui s’est fait ailleurs pour les périodes d’infiltration (« storm ») notamment par l’équipe « transferts en zone non-saturée » du LTEH à Grenoble (Haverkamp, 2002). Cet article est une excellente occasion de rassembler ces deux solutions analytiques et de les relier à un modèle de bilan d’énergie très simple (nécessaire pour calculer l’évaporation potentielle en entrée du modèle) monosource (nécessaire pour fournir des sorties au pas de temps horaire compatibles avec les données de télédétection, Tableau 4) pour former un modèle SVAT simple à base physique, dont le code n’excède pas deux ou trois pages (Figure 8).

FICHE 2 : Bilan d’énergie en conditions potentielles (Boulet et al., 2009)

La température de surface en conditions potentielles \(T_s \) est la solution de l’équation du bilan d’énergie exprimée comme suit:

\[
(1 - a_s)RS + \sigma e_s (e_s T_s^4 - T_a^4) (1 - \xi(L)) = \rho c_p \beta (T_s \Gamma T_a + r_s (L)) + \rho c_p \left(\left(\frac{e_s(T_s) - e_s}{r_s(T_s) + r_s(L)} \right) \right)
\]

où \(\rho \) est la densité de l’air, \(c_p \) la chaleur spécifique de l’air à pression constante, \(a_s \) l’albédo de surface, \(RS \) le rayonnement solaire incident, \(e_s \) l’émissivité de surface, \(e_a \) l’émisivité de l’atmosphère, \(\sigma \) la constante de Stefan-Boltzman, \(T_s \) la température de l’air, \(G \) est une fraction \(\xi(L) = \xi_s e^{-0.4L} \) du rayonnement net où \(L \) est l’indice foliaire, \(\xi_s \) un facteur empirique, et \(T_{so} \) la température aérodynamique,

\[
\beta = \frac{T_{so} - T_a}{T_{so} - T_a} = 1 - \frac{e^{-\left(\ln(L) - \mu\right)^2/1.28}}{L^{\mu / 1.28}} \quad \text{où} \quad \mu \quad \text{est un paramètre}, \quad r_a = r_{a0} \frac{1}{(1 + Ri)^{\eta}} \quad \text{est la résistance aérodynamique reliant la résistance de l’air en conditions neutres} \quad r_{a0} = \ln\left(\frac{\left(z_a - d\right)}{\mid z_{sw} \mid}\right)^{2 / 0.4^2 u_a}
\]

au nombre de Richardson \(Ri \), \(Ri = \frac{5 \beta g (z_a - d)}{u_a^2 T_a} (T_{so} - T_a) \) où \(\eta \) vaut 0.75 en conditions instables et 2 en conditions stables, \(z_a \) est la hauteur de mesure de la vitesse du vent, \(d \) la hauteur de déplacement, \(z_{so} \) la longueur de rugosité, \(u_a \) la vitesse du vent à \(z_a \) \(e^* \) est la tension de vapeur saturante, \(e_s \) tension de vapeur de l’air, \(r_s(L) = \frac{r_{cmin} L}{L - 1} \) est la résistance minimale de surface, fonction de \(r_{cmin} \) la résistance stomatique minimum.

Dans ces conditions \(\lambda e^*_{p} = \frac{\rho c_p}{\gamma} \left(\frac{e^* T_o (T_s) - e_s}{r_s (T_s) + r_s (L)} \right) \)

Tableau 4: Fiche 2: Expression du bilan d’énergie monosource

Le développement analytique, qui n’est pas poussé jusqu’au bout dans l’article de Guido Salvucci, est d’abord complété (Boulet et al., 2000) à l’aide de l’Approximation de Compression du Temps (« Time Compression Approximation », ou « TCA »). S’en suit un article de Levine et Salvucci (Levine, 1999), qui étendent la solution à tous les couverts végétaux par l’inclusion d’une zone racinaire. Là encore, la TCA est appliquée pour obtenir une équation analytique de la transpiration au cours du temps pour une période de ressuyage donnée (Boulet et al., 2004 et Tableau 5). Le modèle obtenu est
ensuite comparé aux sorties d’un modèle SVAT complexe dont il est l’analogue analytique (SiSPAT, Braud et al., 1995) pour différents niveaux d’indice foliaire et de densité racinaire.

FICHE 3 : Expression de l’évaporation journalière (tirée de Boulet et al., 2004)

Après une pluie ou une irrigation, les racines peuvent extraire facilement l’eau disponible dans la zone racinaire, A, qui correspond à la différence entre la teneur en eau du sol au voisinage des racines et le point de flétrissement. Elles peuvent aussi extraire au taux maximal (transpiration potentielle e_p) une partie de l’eau située en dessous de la zone racinaire, jusqu’à ce que la diffusivité du sol limite la transpiration. Soient K_0 [LT$^{-1}$] la conductivité hydraulique initiale et S_d [LT$^{-1/2}$] la désorptivité. K_0 et S_d dépendent de (i) la teneur en eau du sol en début de ressuyage θ_0 [-], (ii) les paramètres d’échelle de la courbe de rétention (teneur en eau à saturation $\theta_{s,t}$ [-] et pression d’entrée d’air h_g [L]) et de la conductivité hydraulique (conductivité hydraulique à saturation K_{sat} [LT$^{-1}$]) et (iii) les paramètres de forme de ces deux courbes, qui dépendent principalement de la texture du sol (Haverkamp et al., 2002). Ici nous utilisons la courbe de retention de van Genuchten (van Genuchten, 1980) reliant la pression capillaire h [L] à l’humidité volumique θ [-], sous l’hypothèse de Burdine (Burdine, 1953), et la courbe de conductivité hydraulique de Brooks et Corey (Brooks and Corey, 1964) reliant la conductivité hydraulique K [LT$^{-1}$] à l’humidité volumique θ:

$$K = \frac{(\theta / \theta_{sat})^{1/2}}{m}$$

et

$$\theta / \theta_{sat} = \left[1 + \left(\frac{h}{h_g}\right)^{2-m}\right]^{m}$$

où m [-] est un paramètre de forme.

Dans ce cas :

$$S_d^2 = \frac{4K_{sat}h_g(1-m)}{3}c_p(\theta_0, \theta_{sat}, m) \text{ et } \frac{K_0}{K_{sat}} = \left(\frac{\theta_0}{\theta_{sat}}\right)^{2+\frac{1}{m}}$$

$$c_p(\theta_0, \theta_{sat}, m) = \theta_0B_{x,a,b}\left(\frac{\theta_0}{\theta_{sat}}\right)^{\frac{1}{m}}\frac{5m+1}{2}\frac{1-m}{2} + \theta_{sat}B_{x,a,b}\left(\frac{\theta_0}{\theta_{sat}}\right)^{\frac{1}{m}}\frac{7m+1}{2}\frac{1-m}{2}$$

où $B_{x,a,b}(x,a,b) = \int_0^1 u^{a-1}(1-u)^{b-1}du$

Alors l’évolution temporelle de la transpiration peut s’écrire:

$$\forall t < \tilde{t}_{stress}, \tilde{e}(t) = e_p$$

$$\forall t > \tilde{t}_{stress}, \frac{1}{\tilde{e}(t)} = \tilde{t} - \tilde{t}_{stress} + \tilde{A} - \tilde{t}_{stress}\tilde{e}_p + \frac{\tilde{t}_{stress}}{\tilde{t}_{stress}\tilde{e}_p - A} + \ln\left(1 + \frac{1}{\tilde{e}(t)}\right)$$

Si les facteurs de normalisation suivants sont définis:

$$\tilde{A} = 2\left(\frac{K_0}{S_d^2}\right), \tilde{t} = 2t\left(\frac{K_0}{S_d}\right)^2 \text{ et } \tilde{e} = e / K_0$$

Alors la durée adimensionnelle séparant le début de stress hydrique de la fin de la pluie ou de l’irrigation, \tilde{t}_{stress}, est solution de:

$$\tilde{e}_{stress}\tilde{e}_p - \tilde{A} = 1 + \frac{\tilde{t}_{stress}}{\tilde{t}_{stress}\tilde{e}_p - A}$$

La date de début de stress est donc:

$$t_{stress} = \frac{\sqrt{\frac{S_d}{K_0}}}{2} \tilde{t}_{stress}$$

Et la chronique de transpiration: $e(t) = K_0\tilde{e}(t)$

Tableau 5: Fiche 3: Expression analytique de l’évaporation à partir de l’équation de Richards (1931)
L’évolution de l’évapotranspiration est généralement exprimée pour un pas de temps journalier (la TCA implique une réponse à un forçage atmosphérique constant) mais il est possible d’exprimer le bilan d’énergie à l’échelle horaire en supposant que, par exemple, le rapport entre l’évaporation réelle et l’évaporation potentielle ou la fraction d’évaporation sont constants sur la journée (Gentine et al., 2007).

Modèle hydrologique: Δt = 1 jour

![Diagramme](image)

Figure 8: Schéma de SVATsimple

2.2.2. **kB¹ radiométrique**

Nous avons vu que dans SVATsimple un seul flux d’évapotranspiration est calculé, ce qui est suffisant pour établir un bilan hydrique dans une grande majorité des cas ; d’autres modèles (ISBA notamment) séparent les composantes « évaporation du sol » et « transpiration » tout en conservant un seul bilan d’énergie global pour la surface et donc une seule température d’équilibre. Alors que dans les schémas double-source la source de chaleur mixte de l’ensemble sol-plante est située au niveau aérodynamique et clairement définie par le modèle de Shuttleworth et Wallace (Shuttleworth, 1985), les modèles mono-source ne font pas toujours clairement la distinction entre la température au niveau aérodynamique (ou « température aérodynamique », c’est-à-dire la température de l’air au niveau aérodynamique dans la canopée, en équilibre avec le sol et la végétation) et la température de surface, ce qui peut expliquer les défauts de performance des modèles mono-source pour le flux de chaleur sensible, défauts évoqués plus bas.

Des travaux antérieurs on mis en avant le concept de « kB¹ » radiométrique pour relier les deux températures (Lhomme et al., 2000; Matsushima, 2005). Pour ces travaux, le kB¹ s’exprime à travers la modification de la longueur de rugosité pour les échanges thermiques z_{ch}. Si le flux de chaleur sensible H s’écrit :

\[
H = \rho C_p \frac{C_{H,rao} u_a}{z_{ch}} \left(T_{surf} - T_u \right)
\]

(1)
où \(\rho \) est la densité de l’air, \(c_p \) la chaleur spécifique de l’air à pression constante, \(C_{H,rad} \) le coefficient de transfert turbulent, \(u_a \) la vitesse du vent, \(T_{surf} \) la température radiative de surface et \(T_a \) la température de l’air, alors :

\[
C_{H,rad} = \frac{k^2}{\left(\ln \frac{z-d}{z_{om}} + \Psi_m(\zeta) \right) \left(\ln \frac{z-d}{z_{oh,rad}} + \Psi_{h,rad}(\zeta) \right)}
\]

(2)

Où \(k \) est la constante de van Karman, \(z \) la hauteur de référence pour les mesures de vitesse de vent et de température de l’air, \(d \) la hauteur de déplacement, \(z_{om} \) la longueur de rugosité pour les échanges de moment cinétique, \(\Psi_m \) et \(\Psi_{h,rad} \) les fonctions d’instabilité pour les transferts de moment et les transferts thermiques (respectivement) dépendant de la longueur normalisée de Monin-Obhukov \(\zeta \) et \(z_{oh,rad} \) la rugosité pour les échanges thermiques incluant la différence entre les températures de surface et aérodynamique.

Cependant sa paramétrisation n’est pas aisée car elle ne correspond pas à un concept facilement appropriable et plusieurs formulations ont été dérivées ; en revanche, Chehbouni et al., 1997 ont proposé une relation empirique reliant la température aérodynamique \(T_{aero} \), la température de l’air et la température de surface dépendant du facteur principal de variation du « kB \(^{-1} \) » radiométrique, l’indice foliaire \(L \):

\[
\beta(L,\nu) = \frac{T_{aero} - T_a}{T_{surf} - T_a} = \frac{1}{e^{\nu/(\nu-L)} - 1}
\]

(3)

Dans ce cas :

\[
H = \rho c_p \beta C_H u_a (T_{surf} - T_a)
\]

(4)

où

\[
C_H = \frac{k^2}{\left(\ln \frac{z-d}{z_{om}} + \Psi_m(\zeta) \right) \left(\ln \frac{z-d}{z_{oh}} + \Psi_{h}(\zeta) \right)}
\]

(5)

Cette relation, calée sur des couverts épars sahéliens, est une fonction monotone décroissante de l’indice foliaire (Leaf Area Index \(L \)). Elle n’est pas valide au delà d’un indice foliaire égal à \(\nu \) (soit 1.5 pour les couverts sahéliens pour lesquels la relation a été établie). Or l’on peut s’attendre intuitivement à ce que :

1- Pour un sol nu, le rapport \(\beta \) est proche de 1 : il n’y a pas de différence notable entre la température de surface et la température de l’air situé à une distance égale à la longueur de rugosité, qui est de quelques mm pour un sol nu. Cependant, dès que le l’indice foliaire augmente, l’influence de la végétation, dont la température de surface est en général plus faible que celle du sol, évolue en fonction à la fois de la hauteur de déplacement (donc de la hauteur de la végétation) et du contraste de température entre le sol et la végétation. La température aérodynamique est cependant plus proche de la température du feuillage que de la moyenne radiométrique des températures de surface du sol et de la végétation. Par conséquent, le rapport baisse très rapidement, pour devenir minimal lorsque le couvert est développé mais épars, en général vers \(L = 1 \) ou 2.

2- Pour une végétation très dense, l’influence de la température du sol sur la température aérodynamique diminue, et ce rapport se rapproche de nouveau de 1 ; compte tenu des éventuels effets géométriques (« clumping », i.e. grande densité de feuillage séparé par des zones de sol nus visibles depuis le ciel), le rapport va tendre plus ou moins rapidement vers 1 depuis le minimum cité précédemment.
Cette hypothèse, étayée par les sorties du modèle double-source ICARE appliqué pour un couvert de blé tout au long de sa saison de croissance (Figure 9), m’a permis de proposer une nouvelle relation empirique simple basée sur la loi de probabilité lognormale à deux paramètres σ et μ:

$$\beta(L, \mu, \sigma) = \frac{T_{\text{aero}} - T_{a}}{T_{\text{surf}} - T_{a}} = 1 - \frac{1}{L \sigma \sqrt{2\pi}} \cdot e^{\frac{-\ln(L) - \mu}{2\sigma^2}}$$ \hspace{1cm} (6)

Les travaux en cours essaient d’établir i- la validité de cette relation (i.e. améliore-t-elle la simulation du flux de chaleur sensible ?) et ii- la variabilité des paramètres pour une gamme étendue de couvert (blé, mais, tournesol).

![Figure 9: Différentes estimations du paramètre β (données du site blé R3)](image)

(à gauche : comparaison des différentes formulations ; à droite : impact sur le flux de chaleur sensible)

2.3. Comparaison de modèles de complexité croissante :

2.3.1. SVATs

Dans le cadre d’IRRIMED WP3, nous devions tester différents modèles SVAT de complexité croissante afin de déterminer quel modèle présentait le meilleur équilibre ou du moins le meilleur compromis entre les critères de performance, de robustesse et de complexité pour l’estimation i- de l’évaporation totale et ii- des composantes évaporation du sol / transpiration.

Les résultats concernant l’évapotranspiration totale obtenus au cours de cette intercomparaison ont montré que pour un couvert de type blé, SISPAT et SVATsimple sont équivalents après calibration, tandis que pour un couvert arboré seul un modèle SVAT complexe simule bien les transferts après calibration. Avant calibration, seul SISPAT simule bien les flux. La méthode FAO56 quand à elle simule mal les périodes de stress, notamment en fin de saison de culture du blé, et la forte évaporation du sol.

Pour les couverts arborés, nous avons, dans le cadre du stage de Moustafa Lo, comparé deux SVATs relativement complexes se distinguant seulement par la formulation du bilan d’énergie (c’est-à-dire qu’ils ont le même algorithme de résolution du bilan hydrique du sol): ISBA possède une seule source d’énergie donc une température d’équilibre de surface tandis qu’ICARE comporte deux sources d’énergie et donc deux températures d’équilibre, une pour le sol et une pour la végétation. Les deux modèles ont été comparés pour le site de l’oliveraie de l’Agdal au Maroc (Er-Raki, 2009), en utilisant comme paramètres d’entrée soit ceux de la littérature (tables, fonction de pédotransfert, résistance du sol à l’évaporation), soit ceux mesurés in-situ (résistance stomatique minimale, propriétés...
Les résultats montrent une sous-estimation du flux de chaleur sensible total (Figure 10; peut-être en raison de la difficulté à paramétrer correctement la température aérodynamique dans les modèles mono-sources, cf. ci-dessus) mais une bonne performance des modèles quant à l’estimation de la transpiration (Figure 11). En revanche, les deux modèles ont tendance à surestimer l’évaporation du sol en début de ressuyage (c’est-à-dire juste après la pluie ou l’irrigation) ce qui indique un défaut de robustesse des paramétrisations relativement empiriques de la résistance du sol à l’évaporation qui sont proposées dans la littérature.

![Figure 10: Intercomparaison des performances d’ISBA et d’ICARE pour le bilan d’énergie global des oliviers de l’Agdal](image10)

![Figure 11: Performances d’ICARE et ISBA pour la transpiration (LEv) et l’évaporation du sol (LEs)](image11)
Les modèles ci-dessus ont été appliqués pour des valeurs de paramètres mesurés sur les sites ou tirés de la littérature lorsqu’aucune mesure n’était disponible. Cependant, l’évaluation des paramètres d’entrée se heurte à la grande diversité des valeurs que l’on trouve dans la littérature pour des paramètres très sensibles et mal définis tels que les résistances stomatiques minimales du couvert ou les propriétés hydrodynamiques des sols. Bien souvent, on se contente d’ajuster les valeurs de ces paramètres en minimisant pour une période donnée la distance moyenne entre les sorties du modèle et quelques flux totaux observés, notamment l’évapotranspiration. Or simuler correctement l’évapotranspiration ne signifie pas forcément que les composantes de cette dernière, l’évaporation du sol et la transpiration, correspondent forcément à la réalité. Ce problème classique de la modélisation de systèmes complexes est fréquemment évoqué en hydrologie sous le terme d’équifinalité (Beven, 2003) : le fait que l’une ou l’autre des composantes du bilan hydrique soit correctement simulée par un modèle ne garantit pas que toutes les composantes soient simulées de façon réaliste. Cela reste vrai même si l’on reproduit de façon satisfaisante un terme de ce bilan qui intègre plusieurs processus (évapotranspiration, débit...). De plus, il existe généralement une infinité de combinaisons de valeurs pour les composantes du bilan hydrique qui fournissent le même bilan global. Cela se traduit par la multiplicité des combinaisons des paramètres du modèle qui expliquent la même variable hydrologique observée. Un exemple de ce problème d’équifinalité est illustré ci-dessous.

A partir du jeu de données acquis pour la parcelle de blé B123 du site R3 de SudMed (Duchemin et al., 2006), nous avons cherché les paramètres hydrodynamiques du sol sur une gamme réaliste tels que les flux de chaleur latente totale simulé et observé soient très proches. Les résultats sont exprimés pour les deux paramètres les moins bien connus, la pression d’entrée d’air h_g et la conductivité hydraulique à saturation K_{sat} (voir Tableau 5). La solution obtenue pour le maximum d’efficacité (Figure 12) partageait l’évaporation et la transpiration selon un comportement insolite expliqué par la forte capacité de rétention de ce sol (pression d’entrée d’air faible): contrairement à ce qui est observé in-situ, les valeurs de paramètres optimales impliquent que le sol évapore au taux potentiel pendant une très longue période (Figure 13) tandis que la végétation limite sa transpiration dès le début puis l’augmente à la faveur de l’énergie dégagée sous forme de chaleur sensible par le sol lorsque ce dernier n’évapore plus, aux alentours du 6 mai. Or l’évolution de l’humidité de surface mesurée par sonde TDR (dont la variation temporelle est très corrélée à l’évaporation du sol) et celle de l’humidité dans la zone racinaire (dont la variation temporelle est très corrélée à la transpiration) montrent une rupture de pente autour du 27 avril (pour la surface) et du 6 mai (pour la profondeur ; Figure 14). La chute de l’évaporation totale autour du 6 mai est donc vraisemblablement plus liée à une chute de la transpiration que de l’évaporation du sol.
Figure 12: Efficience de l’évaporation totale en fonction des deux paramètres hydrauliques principaux

En revanche, les paramètres hydrodynamiques calibrés sur les chroniques de température de surface (Figure 15) correspondent à une succession plus conforme à la réalité. Le couple de paramètres identifié pour le maximum d’efficience entre les chroniques de température de surface observées et simulées est cohérent avec l’évolution des teneurs en eau observées.
Ce résultat est intéressant, car il montre que, quand bien même les températures de surface et le flux de chaleur latente observés ont une évolution cohérente et proche des observations (voir le chapitre 3.1), un modèle complexe à base physique dont les paramètres hydrauliques les plus sensibles calés sur l’un ou sur l’autre ne simulera pas du tout la même évolution des composantes du flux de chaleur latente totale. Nous retrouverons plus loin ce problème d’équifinalité lorsque nous calibrerons les paramètres du modèle de fonte de la neige sur la seule hauteur totale de neige (complémentarité entre la densité et le contenu en eau de la neige similaire à la complémentarité entre évaporation du sol et transpiration) ou ceux d’un modèle hydrologique sur le seul débit à l’exutoire (complémentarité entre les écoulements de subsurface, l’évaporation et l’exfiltration des zones saturées).

Figure 14: Détermination des stress hydriques à partir des chroniques d’humidité

Figure 15: Efficience de la température de surface en fonction des deux paramètres hydrauliques principaux
2.3.2. Modèles de fonte de neige

Jusqu’à présent, l’intercomparaison des modèles s’est faite indépendamment de la disponibilité des données d’entrée, en supposant que pour les zones de plaine ou les périmètres irrigués le forçage météorologique est à peu près bien connu à travers un réseau de stations météorologiques ou même des sorties analysées de modèles météorologiques. Compte tenu de la faible disponibilité des données météorologiques en montagne (et des moindres performances des modèles de prévision météorologiques dans ces régions), le travail de recherche du modèle d’évolution du manteau neigeux présentant le meilleur compromis entre performance, robustesse et complexité doit tenir compte avant tout de la faible disponibilité de certaines variables météorologiques en zone de montagne, et notamment la difficulté de spatialiser le vent et l’humidité de l’air. Aussi, lorsque l’on veut spatialiser la fonte des neiges se pose là encore le problème de savoir quel modèle choisir pour bien représenter le processus avec le minimum de données météorologiques, et si possible les plus facilement spatialisables : la température de l’air (gradient adiabatique) et, dans une moindre mesure, le rayonnement (effets d’exposition).

Alors que pour le calcul de l’évaporation les modèles complètement empiriques (Seguin et al., 1994) ont été quasiment abandonnés au profit de modèles dont l’empirisme est limité à la pondération d’une « évaporation potentielle » ou une « évapotranspiration de référence » (FAO56, (Allen, 1998)) calculée à partir de champs météorologiques à 2m largement disponibles en plaine, par un facteur de stress et/ou un « coefficient cultural », les modèles de fonte les plus simples basés sur un formalisme quasi exclusivement empirique appelé dégré-jour (Equation 7) sont encore très largement utilisés. Certains auteurs (Brubaker et al., 1996; Williams et Tarboton, 1999) ont étudié le fondement « physique » de cette relation à partir de formalismes de bilan d’énergie simples, et il apparaît que bien que l’on puisse factoriser le taux de fonte M en fonction des variables facilement spatialisables (température de l’air et éventuellement rayonnement), cette relation reste très empirique car le facteur principal de fonte FDF est en théorie proportionnel à la vitesse du vent, très difficile à spatialiser en montagne :

\[
\begin{cases}
 M = FDF \cdot (T_a - T_{crit}) & \text{si} \ T_a < T_{crit} \\
 M = 0 & \text{si} \ T_a \geq T_{crit}
\end{cases}
\]

(7)

Où M est le taux de fonte journalière, FDF le facteur de fonte, \(T_a \) la température moyenne journalière de l’air et \(T_{crit} \) la température critique de fonte.

Les montagnes semi-arides se distinguent par le caractère éminemment éphémère de la couverture neigeuse, et donc de l’importance des interactions entre le couvert et le sol sous-jacent ou adjacent, de la relative sécheresse de l’air, et de l’importance du rayonnement incident (notamment du à une plus faible nébulosité que sous nos latitudes). Dans ces conditions, des processus tels que la sublimation, qui participent aux pertes en eau de la montagne sans pour autant contribuer au débit des oueds, sont susceptibles d’occuper une part significative des flux de masse et d’énergie. Or, alors que les modèles degré-jour offrent un très bon compromis entre performance, robustesse et complexité, ils ne sont guères capables de simuler la sublimation, qui dépend de paramètres atmosphériques difficiles à spatialiser, tels que le vent ou l’humidité de l’air. Seuls les modèles représentant explicitement les différents termes du bilan d’énergie simulent également ce terme, qui reste néanmoins difficile à mesurer sur le terrain malgré les progrès en mesure de covariances turbulentes (Molotch et al., 2006).

Une partie de la thèse d’A. Chaponnière et de celle d’A. Boudhar ont donc été consacrées à l’inter comparaison de ces différents modèles pour la station de l’Oukaimedem, située dans le haut Atlas
marocain à 3200 m d’altitude. Au cours de ces travaux, le dispositif existant (une station météo complétée par une sonde de hauteur de neige) a été renforcé au moyen d’un albédomètre et de campagnes de mesures de densité de la neige, mesures indispensables pour mieux comprendre le bilan radiatif, d’une part, et mieux décrire le bilan hydrique du couvert, de l’autre. Plus récemment, nous avons installé un radiomètre mesurant les quatre composantes du bilan radiatif ainsi qu’un pluviographe à pesée. Dans les deux thèses, les modèles d’évolution du manteau neigeux ont été appliqués à l’échelle locale (station de l’Oukaimedem) et à l’échelle du bassin versant de la Rheraya (chroniques de surfaces enneigées, voir prochains chapitres). Au cours de la thèse d’A. Boudhar, nous avons testé le modèle d’accumulation et de fonte des neiges du modèle SRM, basé sur un gradient altitudinal des précipitations et de température calculé entre deux stations situées à l’exutoire et en très haute altitude (respectivement).

(Martinec, 1960) propose la relation :

\[FDF = 1.1 \frac{\rho_n}{\rho_w} \]

où \(\rho_n \) est la densité de la neige qui évolue avec le temps entre une densité de neige fraîche et une densité maximale de neige transformée (Verseghy, 1991) et \(\rho_w \) la densité de l’eau liquide.

(Kuusisto, 1980) suggère plutôt la paramétrisation suivante :

\[FDF = A \cdot \frac{\rho_n}{\rho_w} - B \]

où A et B sont des constantes à calibrer localement

Il en ressort que :

1. le modèle de bilan d’énergie ISBA_ES (Boone et Etchevers, 2001) simule relativement bien l’évolution du manteau neigeux à l’échelle ponctuelle lorsque les deux paramètres les plus sensibles du modèle (albédo de neige fraîche et rugosité) sont calibrés au préalable (Figure 16); il reste cependant à évaluer le réalisme de la répartition entre stockage et percolation de l’eau de fonte.

2. le modèle degré-jour de Martinec appliqué localement a les moins bonnes performances, cependant c’est celui qui simule le mieux l’évolution des couverts enneigés tels qu’observés par télédétection (Boudhar et al., 2009b), même par rapport aux modèles dont les coefficients sont calés (le modèle de Martinec étant appliqué sans calibration dans notre étude).

Le modèle ISBA_ES simule le flux de sublimation ; bien que le modèle soit calé sur les chroniques d’évolution de la hauteur de neige, deux facteurs importants d’incertitude demeurent :

- le modèle d’évolution de la densité de la neige n’a été que partiellement validé par la campagne de mesures 2007-2008.

- compte tenu de la difficulté à estimer la rugosité pour les flux turbulents, le réalisme de la répartition de la diminution du manteau neigeux entre fonte et sublimation ne peut être garanti que par une mesure indépendante de ce flux au moyen de mesures de fluctuations turbulentes.

Nous avons cependant analysé la variabilité intra saisonnière et interannuelle du rapport entre la sublimation et la fonte.

A l’échelle intra saisonnière, la sublimation, bien que variable d’un jour sur l’autre, représente un flux permanent de faible intensité. A l’échelle de la saison il représente un flux d’environ 100 à 150 mm d’octobre à juin (Figure 17).
Figure 16: Equivalent en eau de la neige observé et simulé par ISBA_ES (Boudhar, 2009)

Figure 17: Cumuls des parts sublimation et fonte simulées par ISBA_ES (Boudhar, 2009)
3. Stratégies de spatialisation, de changement d’échelle et de traitement des hétérogénéités

3.1. Les milieux épars : quel bilan d’énergie ? 1, 2..n sources

Nous avons vu précédemment que les modèles SVAT simples avaient un bon rapport complexité/performance/robustesse pour les couverts simples de type blé.

Pour les couverts arborés, le problème est plus complexe; en effet, alors que pour les couverts herbacés homogènes tels que le blé, l’hypothèse dite de “milieu turbide” (concept applicable notamment, mais pas exclusivement, au transfert radiatif, pour lequel on suppose que la canopée est formée d’une infinité de réflecteurs de taille infiniment petite et d’orientation azimutale aléatoire) est relativement cohérente, ce n’est pas le cas des structures végétales plus complexes telles que les arbres. En particulier, une partie non négligeable du rayonnement incident peut arriver directement sur le sol nu sans interagir avec la végétation adjacente. Hors les modèles mono-source ou bi-source monodimensionnels verticaux (la très large majorité des modèles) ne peuvent simuler ces zones de sols nu de façon indépendante que par une approche par « patch » ou « tile », c'est-à-dire en simulant le sol nu d’un côté, et l’ensemble sol et végétation sous-jacent, de l’autre, comme deux colonnes indépendantes. Dans ce cas, les flux de sorties sont alors agrégés pour simuler les flux totaux par simple pondération en fonction du taux de couverture végétal des flux issus des deux colonnes.

Cette approche a été testée au cours de ma thèse et j’ai montré que l’approche à deux patchs simulait mieux le bilan d’énergie dans le cas de couverts fortement hétérogènes (arbustes épars de type creosote bush) et simulait de façon réaliste les températures extrêmes (sol à l’ombre et sol au soleil) dans ce dernier cas (Boulet et al., 1999).

Figure 18: Températures observées pour différents éléments de l’orangeria du site de Saada au Maroc (à gauche) et schéma multicompartiments proposé pour le décrire (à droite)
Le même schéma a été employé pour décrire une orangeraie semi-aride comportant en plus une zone de végétation herbacée (Figure 18). Là encore, le modèle non calibré simule correctement les températures extrêmes (Figure 19). Alors que dans les dispositifs instrumentaux précédents seules deux températures directionnelles sont mesurées, nous avons fait le choix ici de pointer les thermodiomètres sur les éléments individuels du site : sol au soleil, sol à l’ombre, ensemble sol+herbe, arbre au soleil et arbre à l’ombre. Le dispositif « en colonne » ne permet pas de calculer une température de feuillage pour les différentes expositions au soleil, mais une seule température d’équilibre. Dans le cas du site de Saada2, cela est en conformité avec les résultats expérimentaux qui montrent qu’il n’y a pas de différence significative entre les températures des deux expositions compte tenu de l’orientation aléatoire des feuilles et de la relativement faible densité du feuillage au sein de la canopée (Boulet et al., 2006).

Les limites de cette approche sont cependant identifiées : que ce soit pour les échanges turbulents, radiatifs, ou même l’extraction racinaire (les racines puissent aussi dans la colonne de sol nu !), les trois « patchs » ou « colonnes » ne peuvent pas être supposées indépendantes. C’est pour cette raison que l’on a bâti le complexe « mini-SEVE » à partir d’un modèle de bilan hydrique tridimensionnel, BIGFLOW (Ababou and Bagtzoglou, 1993) et de sorties du modèle de bilan radiatif tridimensionnel DART (Gastellu-Etchegorry et al., 2004). Le bilan d’énergie est résolu pour chaque cellule à travers le formalisme de SiSPAT, en moyennant à chaque pas de temps la température aérodynamique au sein du couvert. Ce modèle est en cours d’application pour l’orangeraie du site Saada2 irriguée par submersion (irrigation « gravitaire »). Ce modèle servira notamment à une application pratique très importante : tester en conditions réalistes l’apport de l’irrigation localisée (goutte-à-goutte) par rapport à l’irrigation gravitaire. En effet, apporter de l’eau seulement au niveau des troncs laisse à penser que l’on économise intégralement l’équivalent de ce qui se serait évaporé au niveau des sols nus lors de la submersion. Or cela suppose que du point de vue des demandes évaporatrices les deux types d’irrigation sont équivalents. Ceci n’est pas le cas, car dans un schéma d’irrigation gravitaire, on crée un environnement dans la canopée plus froid et plus humide que dans le cas du goutte-à-goutte, car dans ce dernier cas le sol nu chaud et sec adjacent retransmet une partie de l’énergie non utilisée par l’évaporation sous forme de chaleur sensible, et cet effet de « micro-oasis » implique que la transpiration potentielle dans un système goutte-à-goutte est

Figure 19: Températures observées et simulées pour différents éléments de l’orangeraie
supérieure à celle d’un système gravitaire. Au contraire des approches « patch » traditionnelles, le modèle « mini-SEVE » est particulièrement adapté à cette étude, qui sera menée prochainement.

3.2. Spatialisation du bilan hydrique à l’échelle du Bassin Versant

Dans ce qui précède, nous avons vu que le choix du modèle optimal de bilan hydrique, à l’échelle locale mais également à celle du Bassin Versant, était à la fois dépendant du niveau d’hétérogénéité et de la disponibilité de données d’entrée ou assimilables. Pour la spatialisation du bilan hydrique à l’échelle du BV, deux démarches de spatialisation sont envisageables, qui partent des niveaux de complexité extrêmes : les modèles mécanistes distribués d’un côté, les modèles simples globaux de l’autre. Ces deux démarches peuvent d’ailleurs être menées de façon séparée en convergeant si possible vers un niveau de complexité intermédiaire cohérent avec ces deux facteurs :

- Une démarche descendante : dans les cas, très minoritaires, où l’on mesure chacun des termes du bilan hydrologique (par ex. petit bassin versant expérimental), ou dans les cas, très largement majoritaires, où l’on suspecte que les mécanismes de redistribution de l’eau au sein du bassin versant sont nombreux et complexes mais mal connus, nous sommes tentés d’utiliser un modèle exhaustif de bilan hydrique, de l’appliquer tel quel puis de simplifier les processus simulés les moins pertinents et de réduire le nombre d’éléments représentatifs du paysage (« unités de réponse hydrologiques » dans le modèle SWAT) pour les zones les moins contrastées ou les moins bien connues.

- Une démarche ascendante : dans les cas, très nombreux eux aussi, où l’on a une perception subjective des mécanismes prépondérants de transfert et d’échange au sein du bassin, mais que, par exemple en raison de la faible disponibilité des données d’entrée, l’on ne peut pas mettre en œuvre un modèle trop complexe, nous préférons alors appliquer un modèle simple auquel on rajoute petit à petit des processus manquants ou les transferts entre les principales unités hydrologiques, c’est-à-dire les unités au fonctionnement très contrasté.

3.2.1. Démarche descendante

Dans les années 90 l’utilisation de la démarche descendante a souvent été justifiée par le postulat qu’un modèle distribué à base physique permet une description réaliste des processus. Nous avons vu précédemment que ce n’est pas toujours le cas, et que l’utilisation de ces modèles se fait faute de dispositifs instrumentaux adéquats. Dans le cas des modèles complexes (SVAT et fonte), nous avons vu que l’on peut mettre en place des dispositifs expérientaux pour évaluer même indirectement les
différentes composantes de ces modèles. Nous avons vu aussi (équifinalité) qu’en absence, par exemple, de mesure de transpiration, ou encore de mesure de densité de la neige, un nombre important de configurations pouvaient produire la même variable intégrée (dans ces deux cas : évaporation totale, hauteur du manteau neigeux). Pour les SVATs et les modèles de fonte appliqués à l’échelle locale, un complément instrumental est toujours possible. En revanche, dès que l’on cherche à spatialiser un modèle, et notamment un modèle hydrologique, il est impossible de déployer un dispositif instrumental suffisamment exhaustif pour, par exemple, quantifier les relations entre zone non saturée et zone saturée sur tout le bassin. Nous sommes donc contraints de rechercher des observations indirectes pour, sinon quantifier, au moins valider ou invalider la prépondérance de tel ou tel flux.

Nous avons ainsi montré au cours de la thèse d’Anne Chaponnière que la plupart des modèles hydrologiques appliqués à la Rheraya simulent correctement les débits après calibration, mais ne simulent pas correctement le rythme interannuel d’écoulement de subsurface, qui, d’après les études géochimiques basées sur le carbone organique dissous et la silice (Figure 21), sont relativement constants au cours de l’année (Chaponnière et al., 2008). Tandis que les valeurs « par défaut » des paramètres gouvernant le remplissage et la vidange du réservoir profond de SWAT (qui correspond peu ou prou à une zone saturée sous le lit de l’oued) simulent un rythme saisonnier de la redistribution profonde, les mesures indiquent au contraire un rythme pluriannuel et une redistribution profonde quasi constante pour l’année hydrologique étudiée.

Figure 21: Répartition entre écoulements profonds et superficiels dans la Rheraya : observation (à gauche) en 2003 et simulation (à droite) en 1990/1991 (Chaponniere et al., 2008).

3.2.2. Démarche ascendante

Compte tenu du manque de données hydroclimatiques sur les bassins du Haut Atlas, nous avons mis en œuvre la démarche ascendante en tenant compte des enseignements de la méthode descendante. Deux modèles comportant 4 paramètres hydrologiques ont été appliqués au BV de la Rheraya : le modèle GR4J, modèle conceptuel global qui ne simule pas les processus nivaux, et le modèle SRM, modèle empirique semi-distribué dédié à l’assimilation des surfaces enneigées obtenues par télédétection. GR4J simule les échanges entre réservoirs de surface et profonds, ainsi que les pertes par évaporation, tandis que SRM simule la fonte, le ruissellement sur neige et sur sol nu, ainsi que la récession du débit selon une formule autorégressive du premier ordre. La démarche ascendante utilisée jusqu’à présent a consisté à intégrer les processus nivaux dans GR4J sur la base du modèle degré jour et de sa spatialisation par tranches altitudinales dans SRM (Simonneaux et al., 2008) et de tenir compte des processus de sublimation dans SRM à partir des pourcentages déduits d’ISBA_ES (section 2.3.2). L’inclusion de la part sublimée a permis d’améliorer la simulation des chroniques de surfaces enneigées (Figure 22) si l’on prend comme référence les surfaces enneigées déduites de la téldétection. Cette dernière information spatialisée est obtenue au moyen des données basse résolution dans le domaine optique, par la méthode expliquée ci-dessous.
Figure 22: Scaterrogrammes des surfaces enneigées simulées avec (à droite) et sans (à gauche) tenir compte de la sublimation versus les surfaces enneigées observées par télédétection (Boudhar, 2009).

3.3. Transfert d'échelle lié à l’utilisation des données Basse Résolution

Compte tenu des problèmes évoqués ci-dessus pour correctement alimenter les modèles en données d’entrée (paramètres et forçage notamment), nous devons utiliser le plus d’observations possibles. Parmi les sources d’observation spatialisées disponibles, les données de la télédétection spatiale occupent une place de choix. Cependant, les capteurs à bord des satellites n’ont pas forcément des caractéristiques spatiales (taille et résolution de l’image) et temporelles (revisite) adaptées au suivi du bilan hydrique et énergétique des continents. En particulier, l’observation de la dynamique des surfaces continentales nécessite une revisite temporelle compatible avec la périodicité des événements pluvieux. Pour l’instant, les données haute résolution (< 100 m) facilement accessibles sont acquises systématiquement sur le globe environ toutes les 2 semaines. Seules les données basse résolution sont acquises quasiment chaque jour. Dans le domaine visible, la résolution minimale disponible est celle du capteur MODIS, soit 250 m. Or à cette échelle les pixels sont rarement « purs » et sont constitués d’un mélange sol-végétation ou sol-neige. Ce sont ces différentes signatures que nous comptions identifier ici.

3.3.1. Les surfaces enneigées

Dans le massif du Haut-Atlas, la dynamique de la couverture neigeuse est en général très rapide. Même au niveau du haut de la station de ski de l’Oukaimdèm, les épaisseurs de neige dépassent rarement 1 m. La neige peut donc fondre en quelques jours. La neige ayant un fort contraste de réflectance par rapport au sol, il est relativement facile de suivre l’évolution des surfaces de neige à l’aide de données satellitaires. La nébulosité, bien que croissante avec l’altitude, est néanmoins moindre que pour les zones tempérées, ce qui facilite l’observation de la neige dans toutes les
longueurs d’onde absorbées par les nuages. En revanche, la minceur de la couverture neigeuse signifie aussi que le couvert est discontinu, avec de larges bandes de rochers et de sol nu entre les zones enneigées. A la résolution de MODIS ou de SPOT-VGT, la plupart des pixels sont constitués d’un mélange entre sol nu et neige. Les produits basse résolution binaires (tels que le produit neige actuellement disponible pour MODIS) ne sont donc pas adaptés à la description du couvert neigeux (Molotch et Margulis, 2008). Il semble plus judicieux d’interpréter la palette de réflectances entre les conditions limites, qui correspondent à 100% de sol nu et 100% de neige, à l’instar de ce qui se fait pour les indices modifiés de végétation. Un nouvel indice de neige « modifié » a donc été proposé par Chaponnière et al. (2005) pour tenir compte de la signature spectrale des sols, qui peut être évaluée à l’aide d’images acquises à la fin de l’été lorsque la couverture neigeuse est réduite à quelques névés de haute altitude en face nord. Afin de proposer une relation entre ce nouvel indice et la surface de neige, Chaponnière et al. ont isolé des couples d’images haute et basse résolution acquises à moins d’un jour d’intervalles et calé des relations statistiques (linéaires et sigmoïdes) entre l’indice modifié de l’image basse résolution et la surface de neige obtenue par seuillage des réflectances sur l’image haute résolution et agrégation au pixel équivalent basse résolution. C’est cette relation qui nous a permis de produire des chroniques de surfaces enneigées sur la période 1998-2005 à partir des images SPOT-VGT. Il conviendra à l’avenir de tester la robustesse de cette relation pour d’autres régions et pour des couples d’images acquis en dehors de l’année de calibration.

3.3.2. La température de surface

La température de surface, accessible par télédétection, est de peu d’utilité pour suivre la fonte des neiges, car la surface est souvent proche de 0°C. En revanche, la température de surface permet de suivre l’état hydrique du couvert. Pour ce dernier en effet, l’évaporation est le moyen le plus efficace de dissiper de l’énergie. Elle est donc le principal contrôle de la température de surface, signature du bilan d’énergie. Dans le cadre du stage d’Anthony Guignard, nous avons mis en place une base de données synthétique permettant d’évaluer la performance des méthodes statistiques de désagrégation des données acquises dans le domain Infra Rouge Thermique à la résolution kilométrique (représentative de MODIS) vers l’échelle hectométrique (typiquement : ASTER ou LANDSAT) plus appropriée à la taille moyenne des parcelles agricoles. Cette base de données a été simulée à partir d’une spatialisation « multi-1D » du modèle SVAT ICARE couplé au modèle de fonctionnement de la végétation SAFYE pour des conditions réalistes de forçage correspondant au périmètre R3 de SudMed. Une régression est établie entre la température de surface et l’indice de végétation ou l’albédo à basse résolution suivant la méthode de désagrégation statistique (Agam et al., 2007). Les paramètres de cette régression (pente et erreur moyenne) sont ensuite utilisés à haute résolution pour retrouver la température de surface à haute résolution, en vue d’estimer le stress hydrique à cette échelle par exemple (Figure 23). Comme on pouvait s’y attendre, l’albédo est un meilleur support de désagrégation en début et en fin de saison agricole (semis et sénescence) tandis que l’indice de végétation est un meilleur support pour la désagrégation en milieu de saison (Figure 23, Figure 24).

Nous avons illustré par ces deux exemples (neige et température de surface) les problèmes de changement d’échelle que posent certaines observables de télédétection du fait de leurs caractéristiques spatiotemporelles. Bien souvent la stratégie de spatialisation des modèles dépend des observables utilisées pour alimenter/contraindre le modèle ; la stratégie « pragmatique » est d’utiliser la démarche ascendante dans le cas de bassins très largement sous-observés (thématique « Prediction in Ungauged Basins ») et la démarche descendante dans le cas des bassins dont on peut réduire facilement le nombre de processus non-observables. Je présenterai ci-dessous les différents moyens de contraindre les sorties des modèles à l’aide de données in-situ ou de télédétection, et proposerai dans la section 5 une stratégie ascendante/descendante basée sur une mise en place itérative de modèle et de protocole d’observation.
Figure 23: Cartes de températures de surface avant et après désagrégation

Figure 24: Statistiques d’erreur de la méthode de désagrégation statistique
4. Assimilation de données in-situ et de télédétection

L’assimilation des données dans un système dynamique regroupe les méthodes qui utilisent de façon optimale toutes les informations concernant ce système. Classiquement, ce dernier est constitué i- d’un modèle dynamique (imparfait) permettant de simuler l’évolution du système ; ii- d’observations (bruitées, imprécises) le décrivant et iii- d’un modèle d’observation (imparfait) permettant de relier les observations aux variables simulées par le modèle dynamique. Nous nous intéressons ici aux systèmes de type Markovien. Pour ceux-ci, l’état à tout instant est décrit intégralement à partir de l’état au pas de temps précédent et de variables externes dites de forçage. Dans ce cas, les informations associées au modèle dynamique sont de quatre types :

- les variables d’état (leur évolution est simulée par le modèle à partir d’une valeur initiale prescrite)
- les variables de forçage (variables imposées au modèle)
- les paramètres (variables de forçage constantes pour les échelles de temps caractéristiques du modèle)
- les variables de sortie (combinaison ou interprétation des variables d’état par le modèle ou traduction de ces variables par un modèle d’observation; on regroupe sous ce vocable toutes les variables simulées par le modèle pour lesquelles la valeur initiale en entrée du modèle n’est pas nécessaire)

Par exemple, pour un modèle de type SVAT, l’humidité est une variable d’état, le rayonnement global incident une variable de forçage, la conductivité hydraulique à saturation un paramètre, le flux de chaleur latente une variable de sortie directement simulée par le modèle dynamique et la température radiative de surface une variable de sortie associée au modèle d’observation. Ce modèle est constitué par un modèle de transfert radiatif dans le domaine Infra Rouge Thermique. Néanmoins, une même information, en fonction du modèle utilisé, peut-être classée dans l’une ou l’autre de ces catégories. Ainsi, dans le cas où la température de surface du sol est décrite par un modèle dynamique (par exemple par les équations couplées de transfert de masse et de chaleur), elle constitue une variable d’état. Si elle est décrite par un modèle qui ne tient pas compte de la température au pas de temps précédent (par exemple un bilan d’énergie instantané à la surface pour lequel l’inertie thermique n’est pas explicitement représentée) elle constitue alors une variable de sortie. Cette classification est importante en assimilation, car les méthodes permettant d’utiliser ces catégories d’information sont distinctes.

Cinq types d’incertitude peuvent coexister au sein du système :

- celle associée aux variables d’état simulées par le modèle, et qui dépend de fait de l’incertitude associée aux conditions initiales,
- celle associée aux variables de forçage, non décrite ici mais néanmoins importante,
- celle associée aux paramètres (rarement observables, surtout en hydrologie)
- celle associée aux mesures (observations) des variables d’état ou de sortie, et enfin
- celle associée aux modèles (modèle dynamique ou modèle d’observation).

Les méthodes d’assimilation dépendent de la façon dont nous ajustons les variables ou les paramètres des modèles en fonction des incertitudes décrites ci-dessus, et ce afin de minimiser la différence entre les variables observables et les observations correspondantes. Citons quatre exemples couramment employés pour contraindre un système, c’est à dire utiliser les informations “redondantes” disponibles pour réduire les incertitudes : la calibration, l’inversion, l’estimation optimale et le contrôle optimal.

- La calibration, telle qu’elle est généralement appliquée, interprète l’écart entre les variables observables et les observations correspondantes en fonction de la seule incertitude associée aux
paramètres; les modèles sont supposés parfaits et les conditions initiales et les observations sont supposées certaines; les paramètres sont ajustés pour minimiser cet écart pour une période donnée; dans ce cas nous ne pouvons plus interpréter la différence entre variables observables et observations au-delà de cette période.
- L’inversion (ou forçage) condense toutes les incertitudes en la seule incertitude associée aux observations et au modèle d’observation; dans ce cas, on obtient une valeur de variable observable dont il faut ensuite assurer la compatibilité avec le modèle dynamique, non utilisé dans la procédure.
- L’estimation optimale (typiquement, le Filtre de Kalman ou l’assimilation variationnelle 3D-VAR) condense toutes les incertitudes en la seule incertitude associée aux variables d’état observables et aux observations correspondantes, et éventuellement au modèle d’observation et/ou au modèle dynamique. Elle suppose que les paramètres sont connus a priori, et il est possible dans ce cas de combiner estimation optimale et calibration. Dans le cas du Filtre de Kalman, elle ajuste les variables d’état chaque fois qu’une observation est disponible (Figure 25).
- Le contrôle optimal (typiquement l’assimilation variationnelle 4D-VAR ou le lisseur de Kalman) permet de représenter explicitement toutes les incertitudes concernant les modèles, les paramètres, les variables et les observations.

Figure 25: Présentation schématique des différents termes utilisés en assimilation des données

La disponibilité d’archives de données de télédétection mais aussi de données toujours plus nombreuses en temps réel permet d’utiliser ces données à la fois pour une analyse historique du fonctionnement (utilisation diagnostique), mais aussi un réajustement en temps réel utilisé pour la prévision (utilisation pronostique).

L’utilisation diagnostique permet d’envisager de calibrer un certain nombre de paramètres constants du modèle. L’utilisation pronostique permet d’ajuster en temps réel les variables d’état mais aussi, comme nous le verrons par la suite, un certain nombre de paramètres qui pourraient éventuellement évoluer dans le temps ou pour lesquels la fenêtre de calibration disponible dans les archives est trop courte pour que le processus faisant intervenir le paramètre en question soit actif et influence significativement la variable d’observation sélectionnée pendant la période de calibration.

Les résultats de nos travaux d’assimilation seront décrits domaine spectral par domaine spectral, puis nous présenterons comment l’assimilation multi capteurs combiné à des données in-situ nous permet de construire un Système d’Observation robuste en hydrologie (Figure 26).
4.1. La température radiative de surface

Comme nous l’avons vu précédemment, la température est une variable importante de la plupart des cycles biogéochimiques. Elle est notamment le résultat de l’équilibre énergétique des surfaces continentales. Toute surface cherchera à dissiper l’énergie qu’elle reçoit sous forme de rayonnement incident en rayonnement émis, changement d’état, conduction et convection. Comme nous l’avons déjà souligné, le processus physique le plus efficace pour dissiper cette énergie est l’évaporation. La température est donc une fonction décroissante de l’intensité des pertes évaporatives.

4.1.1. Utilisations de la température de surface pour estimer l’évaporation

L’utilisation la plus courante des données de température de surface, et qui a alimenté la littérature depuis les années 90, est l’inversion instantanée des différents termes du bilan d’énergie à partir d’une observation télédétection de température de surface. D’autres méthodes, pas forcément basées sur la résolution du bilan d’énergie, ont été développées plus récemment, et notamment des méthodes relativement complexes issues de la banalisation des méthodes d’assimilation et des progrès en modélisation SVAT. Une classification de ces méthodes (Boulet et al., 2007) est proposée ci-dessous (Tableau 6) selon une typologie proche des articles de revue publiés récemment (Courault, 2005; Kalma et al., 2008).

Tableau 6: Classification des méthodes d’estimation de l’évaporation à l’aide des données thermiques

<table>
<thead>
<tr>
<th>Estimation instantanée</th>
<th>Avec bilan d’énergie explicite</th>
<th>Sans bilan d’énergie explicite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approche contextuelle (SEBAL,</td>
<td>TVI (Prihodko and Goward,</td>
<td>Albedo, T_s-T_a, (T_s-T_d)/Rs</td>
</tr>
<tr>
<td>(Bastiaanssen et al., 1998),</td>
<td>1997), TVDI (Sandholt et al.,</td>
<td>(Amano</td>
</tr>
<tr>
<td>METRIC, (Allen et al., 2007)) ou</td>
<td>2002), S-SEBI (Roerink et al.,</td>
<td>and Salvucci, 1997)…</td>
</tr>
<tr>
<td>ponctuelles (ALARM (Suleiman,</td>
<td>2000)…</td>
<td></td>
</tr>
<tr>
<td>2002) , SEBS (Su, 2002), TSEB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Norman et al., 1995))…</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyse de tendance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>temporelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CWI (Jackson et al., 1981), WDI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Moran et al., 1994), DTD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Norman et al., 2000)…</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assimilation dans un modèle de</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fonctionnement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple (inertie thermique dans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>un modèle de bilan d’énergie,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Castelli, 1999)) ou complexe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(modèle SVAT, (Demarty, 2004))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assimilation de la date de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>stress dans un modèle de bilan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hydrique (Boulet et al., 2009)</td>
</tr>
</tbody>
</table>

4.1.2. Détection du stress

La gestion durable des ressources en eau dans les zones arides est conditionnée par le calcul raisonné des besoins en eau des secteurs agricoles ; jusqu’à présent, il existe une panoplie de moyens d’estimer ces besoins à l’échelle de la parcelle dès lors que les itinéraires techniques (volumes irrigués etc) sont parfaitement connus. Ceci ne peut donc se faire qu’à l’échelle de la parcelle pour un fermeur « averti ». En revanche, la gestion raisonnée des besoins en eau s’élaborre à l’échelle du district d’irrigation, au niveau duquel les itinéraires techniques sont bien moins connus. La télédétection haute résolution constitue un atout non négligeable pour suivre le développement végétal des parcelles à l’échelle régionale. La démonstration en est faite au cours du projet SudMed (mise en place du logiciel « SAMIR », Simonneaux et al., 2009) à l’aide du domaine visible-proche infra rouge. Cependant, pour optimiser la consommation en eau réelle des plantes, il faut pouvoir accéder à l’état hydrique de la plante. Pour les stress hydriques modérés, la photosynthèse n’est pas compromise et l’effet du stress sur la plante ne peut pas être observé dans le domaine visible-proche infra rouge. Seule l’information dans le domaine de l’Infra-Rouge-Thermique (IRT) peut contribuer à détecter ce stress hydrique. Jusque la fin des années 1990, le Crop Water Stress Index (Moran et al., 1994) était largement utilisé pour évaluer l’intensité du stress hydrique grâce à la télédétection dans le domaine IRT. Les progrès récents dans le domaine de la modélisation des échanges sol-plante-atmosphère (i.e. les SVATs), ainsi que le développement des méthodes d’assimilation des données de la télédétection ont largement supplanté cette méthode. De telles méthodes sont cependant difficiles à mettre en œuvre, notamment en raison de l’incertitude sur le bilan hydrique et les paramètres thermohydriques du sol. Mes recherches, au cours de ces deux dernières années, se sont donc orientées vers le développement de méthodes plus simples et plus robustes, mais tenant compte des progrès de la modélisation. J’ai notamment montré que la température de surface en conditions non stressées, calculée à l’aide d’un modèle simple de bilan d’énergie à partir de données facilement accessibles (forçage climatique et NDVI) est un indicateur robuste du stress hydrique lorsqu’il est comparé à la température de surface observée en conditions réelles par télédétection haute résolution (Boulet et al., 2007). La différence entre les températures de surface en conditions réelles et potentielles est linéairement reliée au facteur de stress (défini comme le complémentaire à 1 du rapport entre l’évaporation en conditions réelles et celle en conditions potentielles), contrairement à la différence entre la température de surface et la température de l’air, pourtant classiquement utilisée dans les études de détection du stress (Figure 27).
Figure 27: Lien entre deux indicateurs de stress hydrique basés sur la température de surface et le facteur de stress (ts-tsp : différence entre les températures de surface en conditions réelles et potentielles ; ts-ta : différence entre la température de surface et la température de l’air)

Cette approche a été validée au moyen des données in-situ acquises pour deux parcelles de blé de l’expérience SudMed et une prairie de l’expérience SALSA. La robustesse de l’indicateur a été testée au moyen d’une étude synthétique consistant à générer des jeux de données contrastés (type de sol, extension de la végétation) pour un climat donné au moyen d’un modèle SVAT (« benchmarking »). Le modèle en question, ICARE, a été préalablement « calé » sur les données de l’expérience blé 2003, parcelle B123, c’est-à-dire que nous avons vérifié (Gentine et al. 2007) que le bilan hydrique et énergétique étaient correctement simulés. En perturbant les différents paramètres d’entrée, nous obtenons des jeux de données de référence qui sont ensuite comparés à la température de surface en conditions non stressées générées par un modèle simple (le modèle SVATsimple, Boulet et al., 2004). On a montré ainsi que quelle que soit la différence entre ces deux modèles et les valeurs des paramètres d’entrée du système, l’indicateur proposé était toujours plus performant que l’indicateur classique, basé sur la différence entre la température de surface et celle de l’air. La robustesse de cet indicateur a également été évaluée au moyen de l’expérience blé 2004.

4.1.3. Le test d’évaporation

Lors de la construction de SVATsimple, nous avons mise en évidence le parallélisme entre les solutions analytiques de Richards pour les épisodes de ressuyage (périodes pendant lesquelles la redistribution de l’eau dans le sol et l’évaporation sont les processus dominants) et celles utilisées depuis longtemps pour les épisodes de pluie (au cours desquelles l’infiltration et le ruissellement de surface sont les processus dominants). Or les solutions de Richards pour l’infiltration sont communément utilisées pour évaluer les propriétés hydriques des sols à travers la mise en place de « tests d’infiltration ». En effet, les solutions analytiques, qui utilisent les mêmes paramètres que
l’équation de Richards, sont bien plus efficaces numériquement, et permettent une recherche de paramètres sur de vastes domaines et sans imposer a priori d’interdépendance entre les paramètres. Les tests d’infiltration consistent bien souvent à estimer les principaux paramètres hydrauliques en minimisant l’écart entre des chroniques d’infiltration mesurée par des dispositifs sous charge (infiltromètre à anneaux, perméamètre de Guelph…) ou succion (infiltromètre à disque) et les chroniques calculées par un modèle analytique.

Puisque les solutions analytiques pour les périodes de ressuayge et celles utilisées pour les tests d’infiltration découleent du même principe, on est tenté d’imaginer un « test d’évaporation » similaire au « test d’infiltration ». Dans ce cas, il serait logique de minimiser l’écart entre la chronique d’évapotranspiration mesurée et celle calculée par l’approximation analytique de SVATsimple. Cependant, alors qu’un test d’infiltration est assez facile à mettre en place sur le terrain, les appareils de mesure de l’évapotranspiration sont complexes et couteux à mettre en place. De plus, contrairement au test d’infiltration pour lequel à la fois le régime transitoire et le régime permanent, donc toute la chronique d’infiltration, dépendent des propriétés hydrauliques du sol, seule la période de stress hydrique est reliée aux propriétés hydrauliques lors d’un épisode de ressuayge. En revanche, la date de début de ce stress, qui, nous l’avons vu, est observable par télédétection ou au moyen d’un simple radiomètre thermomètre sur le terrain, est directement dépendante des propriétés hydrauliques du sol. La détection du stress alliée au formalisme de SVATsimple nous a donc permis de construire un « test d’évaporation » basé sur la minimisation de l’écart entre la date de début de stress hydrique calculée par SVATsimple et observée au moyen de la télédétection thermique (Boulet et al., 2009). Il sera sans doute possible, à l’avenir, de détecter le stress hydrique à l’échelle de la parcelle directement par satellite (mission Mistigri, cf. Chapitre 5).

Pour des conditions normales de culture (irrigation suffisante pendant la phase de croissance et de maturité) il y a en général deux moments où l’évapotranspiration est limitée par les conditions hydrauliques du sol :
- en début de saison après le semis, lorsque le sol est encore nu ;
- en fin de saison lorsque la végétation est en fin de maturité et s’approche de la sénescence.

Pour ces épisodes de stress, le test consiste à :
- déterminer la date de stress ;
- affiner l’estimation de l’évaporation potentielle en modifiant les paramètres du bilan d’énergie les plus incertains (principalement : résistance minimale de surface, paramètre de rugosité pour les échanges convectifs de chaleur, rapport entre le flux de chaleur dans le sol et le rayonnement net) afin de minimiser l’écart entre les températures simulées et observées en conditions potentielles, c’est-à-dire avant le début du stress hydrique ;
- minimiser l’écart entre la date de stress prévue par le modèle (tstress de la Fiche numéro 3, Tableau 5) et celle observée par télédétection.

Bien évidemment, compte tenu de l’incertitude d’estimation de plusieurs variables nécessaires à la mise en place du test (notamment la teneur en eau initiale et la profondeur de la zone racinaire), nous ne pouvons envisager de l’utiliser pour estimer les paramètres hydrauliques du sol, tout au plus pouvons nous identifier quels sont les jeux de paramètres (parmi ceux nécessaires à la mise en œuvre d’un modèle de bilan hydrique) qui sont cohérents avec le stress observé pour chaque pixel. Egalement, puisque le test s’intéresse au stress moyen d’un pixel, il sera intéressant d’analyser les effets de variabilité intrapixellaire d’une telle approche.

Le test a été mis en œuvre pour deux sites, le site de blé B123 de SudMed et le site herbacé de SALS. Nous disposons de deux épisodes de stress pour chaque site : en début et en fin de saison pour le blé, et deux ressuayages successifs de fin de mousson pour SALS. Pour B123, nous avons pu dépouillé des tests d’infiltration suivant la méthode Beerkan (Braud et al., 2005). Pour les deux sites, nous avons pris comme valeur initiale par défaut des propriétés hydrauliques les valeurs de la
fonction de pédotransfert de Clapp et Hornberger (Clapp and Hornberger, 1978). Les graphs ci-dessous indiquent quelles sont les valeurs des propriétés hydrauliques compatibles avec le stress hydrique observé : les ronds pour les valeurs de paramètres qui simulent une date de stress à plus ou moins un jour de la date observée par télédétection, et les carrés pour les valeurs des paramètres qui simulent un flux de chaleur latente proche de celui qui est observé par la méthode des fluctuations turbulentes. Les valeurs de Clapp et Hornberger sont indiquées par une étoile.

Figure 28: Couples de solutions retenues par les différentes méthodes pour le site R3

Figure 29: Couples de solution retenues par les différentes méthodes pour le site SALSA96

Ces résultats montrent deux choses:
- que les valeurs de Clapp et Hornberger satisfont aux critères retenus par le test d'évaporation
- mais que pour SALSA les valeurs obtenues par minimisation de l'écart entre les flux de chaleur latente observé et simulé indiquent une valeur optimale de pression d'entrée d'air bien inférieure à celle de Clapp et Hornberger.

Dans ces deux exemples, l'incertitude sur les valeurs initiales de teneur en eau et d'évaporation potentielle étaient prés en compte de façon réaliste. La précision sur la teneur en eau moyenne mesurée en trois points (une erreur acceptée de 3% vol.) est sans doute déjà faible par rapport aux applications potentielles du test qui utiliseraient une humidité déduite par assimilation et non plus mesurée.

4.1.4. Assimilation des données thermiques directionnelles

Les applications présentées ci-dessus s’intéressent à la surface dans sa globalité (évaporation totale, stress global). Or dans les chapitres précédents nous avons vu comment différents modèles SVATs sont capables non seulement de simuler les composantes (transpiration et évaporation du sol) mais également de simuler des températures pour chaque élément du passage, et notamment, à un endroit donné, pour la végétation et le sol. Aussi, si l’on veut s’assurer que la transpiration et l’évaporation du sol sont individuellement bien représentés (l’agriculteur étant plutôt intéressé par l’évaluation séparée des deux), il convient de contraindre les deux bilans d’énergie, donc d’estimer les états énergétiques du sol (représenté par sa température de surface moyenne Ts) et de la végétation (représenté par sa température de surface moyenne Tv).

Si l’on disposait d’une acquisition directionnelle de la température de surface, nous pourrions estimer les deux températures individuelles. En effet, au nadir, un radiothermomètre « voit » dans son champ de vue plus de sol nu qu’à un angle d’incidence plus élevé. Si plusieurs acquisitions sont effectuées avec des angles de visée très différents, on peut donc déconvoluer le signal directionnel pour extraire toutes les températures individuelles.

Afin de cerner l’apport d’une donnée directionnelle supplémentaire pour l’estimation du bilan d’énergie, nous avons inversé au cours du stage de Camille Martin un bilan d’énergie binaire pour des valeurs contrastées d’humidité de surface et d’humidité de la zone racinaire (celles-ci contrôlent respectivement l’évaporation du sol et la transpiration par le biais de la résistance du sol et de la résistance stomatique respectivement). On voit clairement que sans information préalable sur le profil hydrique du sol, différents états hydriques de la végétation et du sol, donc différents couples (Ts,Tv), produisent la même température radiative et le même flux de chaleur latente pour l’ensemble de la surface (Figure 30) : il faut au minimum deux angles d’acquisition pour retrouver les composantes de l’évapotranspiration.

Afin d’aller au-delà de l’inversion, nous voulons conserver la cohérence de l’estimation des flux avec l’historique du bilan hydrique, c’est-à-dire imposer qu’après une pluie ou une irrigation les flux soient maximaux. Afin de tester l’apport de la température directionnelle en assimilation et non plus en inversion, nous avons implémenté un Filtre de Kalman Ensemble (Evensen, 1994) et un Lisseur de Kalman Ensemble (Evensen and van Leeuwen, 2000) pour une période de ressuyage type d’un blé à maturité suivant la méthodologie de l’expérience jumelle ou Observing System Simulation Experiment (Crow et al., 2001; Pellenq and Boulet, 2002). Alors qu’en inversion il est impossible de déterminer la partition évaporation du sol/ transpiration à partir de la seule information acquise au nadir, la chronique de température de surface au nadir suffit pour réduire les erreurs sur l’humidité profonde, même si la réduction de l’erreur d’estimation est moins rapide que lorsque les deux températures de surface sont assimilées. Ceci est dû au fait que dans la très grande majorité des cas le sol en surface s’assèche bien plus rapidement que le sol en profondeur : l’évaporation du sol diminue plus rapidement que la transpiration. Il en résulte une évolution « par paliers » de la température, détectable à partir de (i.e. corrélée à) l’évolution des humidités de surface et profonde (Figure 31).
Figure 30: Gammes comparées de variations du flux de chaleur latente et de la température radiative de surface (à gauche) et de la différence entre les températures radiatives acquises au nadir et à 55° (à droite) en fonction de l’humidité de surface et de l’humidité de la zone racinaire.

Figure 31: Expérience jumelle d’assimilation de la température de surface directionnelle : « true » : observation, « openlop » : simulation sans assimilation, « EnKF T0 » : assimilation de la température acquise au nadir seulement, « EnKF T0/T55 » : assimilation des températures acquises au nadir et à 55°.
Ceci explique en partie le succès de l'assimilation de la température de surface dans des modèles mono-source, et, aussi, l'inversion des deux composantes en se basant sur cette évolution (TSEB, (Crow et al., 2008; Norman et al., 1995)). Compte tenu du fait qu’en général le sol en surface s’assèche plus rapidement que le sol profond, il faudrait une succession d'événements atypiques (une pluie mineure sur un sol très sec par exemple) pour avoir une évaporation supérieure à la transpiration. Cela rejette les limites de la calibration de SISPAT mentionnée plus haut. TSEB en particulier suppose qu’en général la végétation n’est pas stressée et déduit directement l’évaporation du sol à partir de la température de surface globale par pondération des deux bilans d’énergie sol et végétation. Lorsque l’on simule un flux de chaleur latente du sol négatif (donc une condensation), l’hypothèse d’une végétation stressée ne tient plus et le modèle inverse la transpiration en supposant que le sol n’évapore plus. Par conséquent, seule une gamme très limitée de situations, dont celle mentionnée ci-dessus, ainsi qu’un stress modéré de la végétation associée à une évaporation du sol réduite mais non nulle, ne sont pas correctement reproduites par ce modèle.

4.2. Assimilation conjointe du NDVI et de la température de surface

Un autre indicateur indirect de la disponibilité en eau est la présence et l’état de la végétation. Alors que les données IRT renseignent sur le stress, les données du domaine optique peuvent indirectement renseigner sur la présence de stress persistant impliquant la sénescence du couvert végétal. Afin de proposer une méthode d’assimilation conjointe de l’indice de végétation et de la température de surface, le modèle SISPAT a été couplé au modèle de végétation herbacée annuelle STEP (Mougin et al., 1995). Un essai d’assimilation par Filtre Kalman Ensemble sur des données générées (expérience jumelle) a montré la faisabilité de cette assimilation (Pellenq et Boulet, 2002). Cet essai a aussi mis en évidence le comportement fondamentalement opposé des modèles de bilan de carbone et de bilan hydrique vis-à-vis des incertitudes : pour un modèle SVAT forcé par la pluie (donc non couplé à un modèle atmosphérique), le bilan hydrique a un comportement dispersif des erreurs : si l’humidité est surestimée, les pertes, qui sont toutes des fonctions monotones croissantes de l’humidité, sont aussi surestimées et l’erreur diminue. Pour un modèle de bilan carboné, la photosynthèse est une fonction croissante de la biomasse aérienne, et les pertes (mortalité et respiration nocturne) sont des fonctions croissantes de la quantité de biomasse présente. Le bilan est donc chaotique et les incertitudes peuvent exploser. Un interpolateur d’indice foliaire est donc souvent plus pertinent que les sorties hasardeuses du modèle de fonctionnement de la végétation, alors que l’information sur le bilan hydrique est beaucoup mieux contrainte par la température de surface. Cependant, très généralement, la principale source d’incertitude des modèles reste les paramètres, les variables d’état étant mieux contraintes par le forçage et les données assimilées disponibles. C’est donc vers la calibration en ligne que s’oriente nos recherches et non plus seulement l’estimation des variables d’état (humidité du sol et biomasse).

4.3. Assimilation des surfaces enneigées

Les surfaces enneigées sont très facilement observables par télédétection du fait du fort contraste de réflectance entre la neige et le sol ou la végétation. Nous avons vu comment on pouvait simplement désagréger l’indice de neige (MNDSI,Chaponniere et al., 2005) issu des données de télédétection basse-résolution pour produire des cartes d’enneigement. Dans le Haut Atlas, une partie importante des précipitations tombe sous forme de neige en hiver et au début du printemps. Bien que la dynamique du manteau neigeux y est plus rapide que sous nos latitudes, le stockage transitoire de neige sur les sommets permet de répartir l’alimentation en eau des oueds sur une plus longue période que si toute l’eau tombait à la même époque sous forme de pluie, et notamment de soutenir les débits d’étage en été. Or le lien entre la fonte des neiges et la prévision du débit est insuffisamment connu pour permettre d’établir des prévisions saisonnières fiables. Il est donc nécessaire de mieux caractériser ce lien pour améliorer la gestion de l’eau et la
répartition des allocations d’irrigation, décidées pour l’instant en fonction du niveau actuel et non prévu de remplissage des barrages.

Au cours des thèses d’Anne Chaponnière (pour le BV de la Rheraya) et d’Abdelghani Boudhar (pour les cinq sous bassins versants du Haut-Atlas), nous avons cherché à quantifier l’apport de la connaissance a priori des surfaces enneigées sur la prévision des débits. Les surfaces de neige, qui ne donnent pas d’information sur la hauteur de neige et donc sur les volumes stockés, sont à priori partiellement utiles, et ne permettent pas de prévoir les débits en présence de biais notables sur les précipitations.

Nous avons vu au chapitre 3.2.2 que le modèle d’accumulation et de fonte de SRM permet de simuler une évolution des surfaces enneigées très proche de celle obtenue par télédétection pour les années 1998-2005. Compte tenu de la très large variabilité interannuelle (les années 1999-2003 étant très sèches) ce modèle semble étonnamment robuste et indique que l’observation satellitaire à l’échelle annuelle n’apporte pas suffisamment d’information nouvelle pour l’hydrologie. Ce résultat est conforté par la calibration des paramètres « hydrologiques » de SRM (coefficient de ruissellement et paramètres de récession) : SRM, qu’il soit piloté par les surfaces enneigées télédéectées (MOD1, Figure 32) ou par les sorties du modèle d’accumulation et de fonte (MOD2), a des performances très proches, avec un léger avantage pour l’information satellitaire. En revanche, si l’on analyse en détail plusieurs épisodes de fonte on s’aperçoit que l’information satellitaire peut corriger localement des écarts importants de température, mais surtout permet de corriger les bais dus à l’absence de précipitation en basse altitude, là où est située la quasi-totalité des pluviomètres, alors que sur les sommets le couvert nuageux génère des précipitations neigeuses non mesurées par le réseau d’observation météorologique mais observées par télédétection (Boudhar et al., 2009a).

Figure 32: Simulations de débit à l’aide de SRM forcé par les surfaces enneigées observées par télédétection (MOD1) et simulées (MOD2), (Boudhar et al., 2009a)
4.4. Assimilation des futures données SMOS

4.4.1. Calibration séquentielle

Dans le cadre de la préparation à la mission SMOS, qui permettra d’estimer l’humidité de surface (0-5 cm) pour des pixels de l’ordre de 40 km de côté, nous avons cherché à savoir comment une telle information pouvait contraindre le fonctionnement hydrologique à l’échelle du bassin versant.

Le produit de niveau 2 issu de SMOS, l’humidité de surface moyennée sur une grille carré, sera complété par des produits de niveau supérieur (3 et 4). Deux produits de niveau 4 sont envisagés : une humidité de la zone racinaire obtenue par assimilation du produit de niveau 2 dans un SVAT à la même échelle, et une humidité de surface désagréée à 1 km. Ces deux produits ont un intérêt évident pour la modélisation hydrologique : le premier permettrait d’obtenir une meilleure initialisation de l’état hydrique du bassin en début de pluie, et donc de définir la quantité d’eau qui peut s’infiltrer sans saturer la colonne de sol, puis s’écouler dans le bassin et générer du ruissellement sur zone contributive (ruissellement de type Dunne) ; le second permettrait d’initialiser l’état hydrique de surface en début de pluie, et donc de mieux connaître la capacité d’infiltration en surface, et donc la probabilité d’occurrence d’un ruissellement par excès d’infiltration (ruissellement de type Horton).

La possibilité d’estimer l’humidité de la zone racinaire par assimilation de l’humidité de surface acquise à l’échelle du pixel SMOS dans un modèle couplé de type ISBA_TOPMODEL nous permet d’envisager un système d’observation basé sur un assemblage de bassins versants de taille moyenne (quelques centaines de km²). Nous avons vu précédemment que les performances d’ISBA_TOPMODEL, bien que satisfaisantes à long terme, sont néanmoins inférieures à celles du modèle TOPSIMPL réinitialisé en début de crue. Il est donc important de contraindre l’état hydrique du bassin en début de crue par des observations indépendantes telles que celles de SMOS. Même si nous sommes encore loin de pouvoir tester un tel système d’observation, il est intéressant de voir quel peut être l’impact d’une observation régulière de l’état hydrique du bassin sur la propagation des erreurs d’estimation de l’humidité du bassin et du débit.

Or nous savons que la qualité des prévisions du modèle hydrologique tient prioritairement à l’estimation des paramètres constants du modèle. Cette estimation est souvent obtenue par calibration des paramètres sur une période plus ou moins longue en minimisant l’écart entre les débits observés et simulés. L’état hydrique initial du bassin est souvent un paramètre à caler, et, bien que l’humidité soit une variable d’état, la propagation de l’erreur d’estimation de cette condition initiale au cours de la période de calibration est systématiquement ignorée. Or on peut s’attendre à ce que le modèle soit mieux contraint dans les périodes de faible incertitude d’observation (par exemple après un épisode de pluie relativement homogène à cette échelle, par exemple lors du passage d’une perturbation atmosphérique d’origine océanique, ou à la fin d’une longue période d’assèchement) et moins bien contraint lorsque l’hétérogénéité naturelle de l’humidité est importante. Il serait donc logique de tenir compte de l’incertitude des observations dans la fonction coût utilisée pour la calibration. De plus, sur une année hydrologique, on peut s’attendre à ce qu’un biais persistant en début de saison affecte l’estimation de l’humidité au cours des saisons suivantes, et donc affecte la capacité de prédiction. Bien-surt, comme nous l’avons vu plus haut, il est difficile de maintenir un biais humide ou sec trop persistant en hydrologie en l’absence d’un biais notable sur le forçage météorologique (pluie et évaporation potentielle), compte tenu du fait que l’évolution de l’humidité est gouvernée par une équation d’état ne faisant apparaître que des fonctions croissantes de l’humidité associée à des pertes. Il est néanmoins intéressant de voir comment le réajustement de ces variables à l’intérieur de la période de calibration affecte le résultat de calibration.

Puisque pour Lockyersleigh et Nerringundah nous disposons de mesures d’humidité en de nombreux points du bassin, nous avons voulu savoir
1- comment l’assimilation de l’humidité totale observée affectait le processus de calibration
2- si cette assimilation améliorait ou détériorait la simulation du débit
3- comment ces résultats évoluaient lorsque l’on assimile seulement l’humidité de surface (cas
le plus proche du système d’observation à développer pour SMOS)

Pour répondre à la première question, un filtre de Kalman Etendu a été dérivé du modèle couplé
SVATsimple_TOPMODEL. La simplicité analytique du modèle s’y prête particulièrement et permet de
dériver facilement de façon analytique l’évolution de la variance de l’humidité globale (seule variable
d’état pour ce modèle) au cours du temps. Les principaux paramètres ont été ensuite calibrés en
minimisant la distance entre l’évolution de l’humidité moyenne simulée et observée avec ou sans
assimilation de cette dernière. Afin de rendre compte du comportement moyen du bassin versant,
plutôt que de sa dynamique interne, nous avons fait l’hypothèse que nous pouvons considérer
chacun des 42 profils mesurés par sonde à neutron comme une observation indépendante du
comportement moyen. Cela simplifie grandement les interdépendances que l’on peut observer entre
points hauts et points bas du bassin, mais reste proche de notre objectif, à savoir dériver des
paramètres moyens pour l’ensemble du bassin tout en tenant compte de l’évolution de la variabilité
spatiale naturelle de l’humidité au cours du temps. Sans grande surprise, nous avons pu nous rendre
compte que les paramètres obtenus avec et sans réanalyse (i.e. avec et sans réajustement de
l’humidité à l’intérieur de la fenêtre de calibration), sans doute en grande partie en raison du
caractère dissipatif des erreurs liées au modèle, sont quasiment identiques, le biais entre les
humidités simulées et observées n’étant jamais très importantes, et uniquement liée aux périodes où
le sol est quasiment saturé.

4.4.2. Calibration en ligne

Dans l’exemple ci-dessus, les paramètres sont supposés constants dans le temps. Hors certains
paramètres peuvent évoluer lentement au cours de la saison ou varier d’une année sur l’autre sans
pour autant être gouvernés par des équations d’état bien identifiées comme les variables d’état
traditionnelles (teneur en eau principalement). Ainsi, suite au travail du sol dans les champs, ou du
dépôt et de l’inclusion de matière organique, la texture et la structure du sol superficiel peuvent
evoluter depuis le semis jusqu’à la récolte. Pour les paramètres susceptibles d’évoluer lentement au
cours du temps, une calibration en ligne peut être plus réaliste qu’une calibration globale. Dans ce
cas, ces paramètres sont traités comme des variables d’état avec une équation d’évolution
temporelle de type :
\[p(t + dt) = p(t) + \text{erreur} \]

(10)

Les modèles à réservoir (modèle « bucket ») et les modèles de type « force-restore », simulent
l’évolution la teneur en eau profonde à l’aide d’une profondeur moyenne (profondeur du sol
« hydrologiquement actif ») correspondant en fait à la moyenne annuelle des profondeurs
maximales de pénétration de l’eau infiltrée et d’extraction de l’eau transpirée par les plantes.
Compte tenu des forts contrastes d’intensité des flux selon les saisons, il semble pertinent de faire
evoluter cette profondeur au cours du temps.

Le modèle couplé SVATsimple_TOPMODEL, a été utilisé par Jennifer Pellenq lors de sa thèse pour
implémenter un Filtre de Kalman Ensemble augmenté de la profondeur hydrologiquement active
(Pellenq et al., 2003). L’humidité mesurée par le réseau de 13 profils TDR est assimilée dans le
modèle. Le résultat après assimilation et calibration en ligne montre que cette dernière améliore non
seulement la prédiction de l’humidité (ce qui est attendu car on rajoute 1 degré de liberté
supplémentaire au Système d’Observation, Figure 33) mais aussi le débit à l’exutoire, notamment en
supprimant le biais humide lors des périodes les plus arrosées, donc potentiellement de plus grande
profondeur hydrologiquement active (Tableau 7). Fort de ce constat on peut imaginer une
arborescence de décision combinant calibration et assimilation afin d’obtenir une évolution du système conforme à l’ensemble des observations (Figure 34).

Figure 33: Apport de la calibration en ligne de la profondeur hydrologiquement active (Pellenq et al., 2003)

<table>
<thead>
<tr>
<th>Soil water content efficiency</th>
<th>Daily streamflow efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without assimilation</td>
<td>0.84</td>
</tr>
<tr>
<td>With assimilation</td>
<td>0.96</td>
</tr>
<tr>
<td>With assimilation and online</td>
<td>0.97</td>
</tr>
<tr>
<td>parameterization of d</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 7: Efficiences de simulation des débits selon le schéma d’assimilation (Pellenq et al., 2003)

Figure 34: Proposition d’algorithme pour l’étalonnage et l’assimilation
4.4.3. Assimilation de l’humidité de surface désagrégée

Puisque nous travaillons en zone aride, je rappelle que la plupart des cours d’eau que nous suivons sont des cours d’eau éphémères de type oued. Compte tenu du faible nombre d’événements recensés dans nos jeux de données, et notamment de ceux qui sont sans doute possible rattachés à un mécanisme de génération du ruissellement de type hortonien, nous n’avons pas pu étudier l’impact de l’initialisation de l’humidité de surface sur la simulation du ruissellement de surface. Il faut dire aussi que l’échelle à laquelle nous nous intéressons généralement pour ce type de processus (le versant) n’est pas toujours compatible avec l’échelle à laquelle nous pouvons désagréger l’humidité de façon robuste (1 à 2 km).

L’humidité désagrégée est obtenue au moyen de variables de télédétection auxiliaires, le NDVI et la température de surface, acquises à 1km de résolution (Merlin et al., 2006). Dans un schéma d’assimilation traditionnel, les observables de télédétections peuvent être assimilées quelle que soit leur échelle, il suffit de travailler sur des matrices de covariance contenant toutes les variables d’état de la zone recouverte par l’observable de plus faible résolution. Concrètement, pour une zone sans relief, il est possible d’appliquer un modèle SVAT tel qu’ICARE à 1 km de résolution, de moyennner l’humidité de surface simulée sur le pixel SMOS (par exemple 40*40 pixels), et de réajuster tous les profils d’humidité de la zone (i.e. les 40*40 profils) en fonction de la différence entre cette humidité de surface simulée et l’humidité de surface inversée par SMOS. Dans une étude synthétique basée sur le jeu de données MONSOON’90, Olivier Merlin a assimilé différentes combinaisons d’observables dans le modèle ICARE préalablement calé sur 8 sites permettant de générer l’évolution de 8 pixels synthétiques obtenus en perturbant observables et forçage météorologique. Ces combinaisons sont :

- la température de chaque pixel seule,
- l’humidité moyenne ainsi que la température de chaque pixel et
- l’humidité désagrégée et la température pour chaque pixel.

Les résultats montrent que pour l’humidité comme pour l’évapotranspiration seule l’information sur l’humidité (Figure 35, graphiques du bas) permet de réduire significativement le biais d’estimation. De plus, l’assimilation de l’humidité désagrégée permet de réduire l’erreur d’estimation à l’échelle du pixel de 1 km (barres d’erreur réduites), tandis qu’à l’échelle du pixel SMOS les deux types d’assimilation (humidité moyenne ou désagrégée) ont les mêmes performances comme on peut le voir sur l’évolution de la teneur en eau moyenne (Merlin et al., 2006). Ce résultat encourageant montre combien, selon l’échelle à laquelle on se place, le choix de la variable à assimiler peut être importante. Cet aspect sera plus longuement abordé dans le chapitre « perspectives » qui suit.
Figure 35: Performance comparée de l'assimilation des données SMOS désagrégées ou non (Merlin et al., 2006)
5. Perspectives : quel Système d'Observation pour l’hydrologie en Méditerranée ?

L'utilisation de la télédétection pour mieux contraindre les sorties de modèles hydrologiques (et donc proposer un Système d'Observation efficace) comporte en milieu méditerranéen un certain nombre d'avantages et de limitations :
- Parmi les avantages, on peut citer une nébulosité bien moins développées que dans d'autres milieux. Dans les zones naturelles, le couvert végétal est peu dense et permet souvent l'observation du sol. C'est un avantage pour l'utilisation de la télédétection.
- Parmi les inconvénients, citons le régime d'oued et les événements pluvieux convectifs localisés, qui rendent l'observation du débit et des précipitations très difficile.

Il est donc important d'adapter les stratégies d'assimilation des données de télédétection pour tirer parti de ces avantages tout en restant réaliste sur les limites de performance du Système pour les raisons évoquées ci-dessus. Nous proposons dans ce chapitre un certain nombre de pistes de recherche pour développer ces nouvelles stratégies et se préparer à l'assimilation des nouvelles observations fournies par les missions spatiales récemment lancées, en cours de lancement ou proposées pour les prochaines années.

5.1. Stratégies d’assimilation : s’assurer que l’innovation est conforme à la réalité du fonctionnement du système.

Jusqu’à présent, l’application des méthodes d’assimilation dans les modèles de fonctionnement des surfaces continentales s’est heurtée à la fois à la difficulté d’estimer les erreurs associées au modèle de fonctionnement lui-même (que l’on ne peut pas réduire toujours à une erreur d’estimation des paramètres du modèle, bien que ce soient ces derniers qui expliquent la majeure partie de l’incertitude liée au modèle) et à la limite de précision des observables de télédétection (réflectance, température, émissivité). Mais, outre les problèmes d’échelle inhérents à l’utilisation conjointe de modèles et de données de supports spatiaux très différents, le lien souvent tenu entre l’observation spatiale imprimée et les variables d’état du modèle (le modèle d’observation) limite souvent l’efficacité de ces méthodes. Il serait donc dangereux d’appliquer « à l’aveugle » les méthodes d’assimilation sans s’assurer que l’innovation (par exemple la modification de la teneur en eau) correspond bien à un processus réellement présent (par exemple, un état de stress hydrique).

Il est donc utile de se pencher non pas sur une précision globale du système, mais sur le renforcement du lien (et donc du levier de contrainte) entre observable et variable à estimer. Deux exemples ont été fournis précédemment :
- plutôt que d’assimiler la température chaque fois qu’elle est disponible dans un système dont on ne connaît pas l’état hydrique, n’est-il pas plus pertinent d’assimiler la date de stress ou l’intensité du stress dérivé d’une formule simple ?
- plutôt que d’assimiler la température de brillance moyenne issue de SMOS à l’échelle du pixel SMOS, n’est-il pas plus pertinent d’assimiler une humidité de surface désagrégée au km dans un modèle qui fonctionne avec une maille kilométrique ?

De façon générale, la supériorité de la méthode qui consiste à assimiler directement l’observable de télédétection simulée par un système couplé modèle de fonctionnement-modèle de transfert radiatif, n’est pas prouvée, et nous pouvons imaginer d’autres systèmes :
- assimiler la variable inversée par le modèle d’observation (i.e. l’évapotranspiration ou le stress hydrique plutôt que la température de surface) plutôt que l’observable (Crow et al., 2008).
- assimiler une tendance plutôt que la variable elle-même. Ce dernier axe a été récemment abordé à travers la thématique « soft data assimilation » (Seibert and McDonnell, 2002), c’est-à-dire la mise au point de méthodes permettant d’assimiler des observations non plus
quantitatives mais qualitatives, telles que la pertinence ou non d’un processus, un changement d’état, le dépassement d’un seuil ;
- assimiler la variable désagrégée plutôt que la variable à la résolution native (résolution du système d’acquisition) etc.

Cette question se posera de plus en plus fréquemment dès lors que l’on fabriquera des Systèmes d’Observation de plus en plus complexes (Figure 36) à partir de modèles qui ne simulent pas forcément les variables biophysiques nécessaires à l’application de modèles d’observation (par exemple l’absence de l’humidité de surface dans certains modèles hydrologiques limitant l’utilisation des données SMOS) ou des observables dont la cohérence n’est pas garantie (par exemple une température élevée typique d’un sol nu observée dans une zone de fort NDVI).

Figure 36: Schéma de la plateforme de modélisation-assimilation

5.2. Un Système d’Observation pour les bassins versants intermittents

Les systèmes d’observations présentés jusqu’ici utilisent majoritairement les données de la télédétection. Or ces données, à l’exception de celles de la mission GRACE (Ramillien et al., 2008), dont la résolution est bien supérieure aux échelles évoquées ici, concernent exclusivement les variables de surface (i.e. les variables concernant les objets géométriques visibles de la surface ainsi que les tous premiers cms du sol). La seule variable de subsurface accessible par inversion de modèle d’observation à des résolutions kilométriques est l’humidité de la zone racinaire, et seulement lorsque le couvert végétal est en état de stress hydrique. Il est donc indispensable de mettre en œuvre d’autres types d’observation pour mieux caractériser les différents compartiments hydriques du système « bassin versant ». Au cours de la thèse d’Anne Chaponnière, nous avons vu comment par exemple le traçage géochimique pouvait apporter des informations utiles sur la dynamique temporelle de la contribution au débit des oueds des écoulements de subsurface de la partie amont du BV. Cela ne suffit pourtant pas à décrire complètement les hydrosystèmes d’oued, puisqu’une bonne partie des écoulements ont lieu également sous le lit de l’oued et alimentent directement les nappes de plaine en aval, comme celle du Haouz dans le bassin du Tensift. Puisque nous connaissons le débit de l’oued, cette alimentation directe de la nappe par les écoulements profonds peut être
considérée comme la partie résiduelle du bilan à l'échelle de l'année hydrologique, c'est-à-dire en supposant que les stocks de surface sont identiques en début et en fin d'année, en septembre. Nous proposons de mettre en œuvre pour les bassins versants atlasiques, typiques des systèmes de recharge de nappe de plaine alluviale à partir de bassins versants montagneux très actifs, une stratégie alliant simulation et observation. Il s'agit d'une plateforme numérique ayant pour objectif de combiner les observations (satellites ou de terrain) avec la modélisation (Figure 36). Ce système repose sur des méthodes d'assimilation de données pour, à la fois, contraindre la trajectoire du modèle et en améliorer l'étalonnage. Nous proposons par ailleurs une approche par compartiments hydrologiques afin de faciliter l'évaluation de nouvelles paramétrisations et l'inclusion de nouveaux types d'observations. Nous utilisons une modélisation à base physique avec une prise en compte des principaux processus régissant le cycle de l'eau (évaporation, infiltration, ruissellement, fonte, sublimation, transfert latéraux de sub-surface) afin d’améliorer notre compréhension des processus méconnus et de les hiérarchiser.

A l'échelle du petit bassin versant (typiquement, la Rheraya au Maroc, 220 km²) nous proposons une stratégie d'observation originale (Figure 37):
- Des stations nivales équipées d'un système de mesure des fluctuations turbulentes, et des données satellites nouvelles (haute résolution/haute répétitivité : FORMOSAT) seront utilisées pour spatialiser la dynamique très rapide du manteau neigeux et estimer la part sublimée, inconnue jusqu’ici.
- Les transferts de subsurface seront obtenus comme résidu du bilan hydrologique et comparés aux variations de la nappe en plaine ; les signatures géochimiques (isotopes stables et éléments trace) aideront à estimer les cinétiques et la répartition des échanges entre les différents compartiments.
- Pour spatialiser l’évapotranspiration, composante également mal connue, des scintillomètres seront postés de part et d’autre des principales vallées ou des zones de parcours. Pour l’instant, peu de données scintillométriques ont été acquises en condition de relief marqué, l’application de la scintillométrie dans ce contexte est un défi scientifique.
- Nous chercherons enfin à mieux caractériser les prélèvements au fil de l’eau pour l’irrigation et la redistribution sur les terrasses cultivées en montagne ou dans le piémont, termes du bilan assez mal quantifiés jusqu’à présent.

\[
\Delta S = P_{\text{liquid}} + P_{\text{solid}} - E_{\text{sublimation}} - E_{\text{terrace}} - E_{\text{rock}} - Q_{\text{stormflow}} - Q_{\text{subsurface}}
\]

Figure 37: Gammes d'observations permettant de contraindre le bilan hydrique de la Rhéraya
Le lien intuitif entre observations et modèle peut être représenté par l’organigramme de la Figure 38. Le « modèle de référence », sensé représenter l’intégralité des processus mis en jeu ainsi que leurs interactions, est appliqué (étape 1) en utilisant des valeurs par défaut (tirées le plus souvent de la littérature). L’importance relative des processus aux échelles de temps et d’espace qui nous intéressent (étape 2) nous permet de sélectionner les flux principaux pour une étude de sensibilité (étape 3) puis évaluer les problèmes d’équifinalité (Beven, 2003) à travers la mise en œuvre d’une calibration étendue des paramètres les plus sensibles (étape 4) à l’aide de l’ensemble des observations disponibles (en général, en premier lieu, les débits mesurés). Les processus principaux sont alors classés en fonction de l’ampleur de la réduction de la gamme de paramètres d’entrée après calibration. Les processus suffisamment bien contraints par les observations disponibles peuvent ensuite directement permettre d’adapter un modèle simple (approche ascendante, étape 5) tandis que les processus les moins bien définis doivent aboutir à la mise en place d’un protocole de mesure spécifique (étape 6) permettant d’évaluer leur importance relative au cours du temps et d’affiner ainsi la hiérarchisation proposée initialement (étape 7). Au final, il est judicieux de rassembler les processus mal définis (par exemple les écoulements profonds dans le cas de la Rheraya) dans un seul terme (« bulk formulation ») dans le modèle simple utilisé en routine dans le Système d’Observation (étapes 8 à 10).

Figure 38: Proposition d’algorithme pour les démarches descendante/ascendante en modélisation

5.3. Les nouvelles observables : SMOS, Venus et Mistigri

Malgré les progrès évoqués précédemment en termes de désagrégation des données basse résolution à répétitivité quasi-journalière vers la haute résolution de revisite quasi-mensuelle, l’absence de chroniques de données optiques et thermiques compatibles avec l’échelle de la parcelle ou d’une quantification du cycle de l’eau entre deux événements de pluie limite les performances des systèmes d’observation. Dans le premier cas, des progrès significatifs sont attendus avec les missions de démonstration Haute Résolution / Haute répétitivité Venus (optique) et Mistigri (thermique). Des chroniques d’indice foliaire et d’indice de neige issues du capteur FORMOSAT2 (dont les caractéristiques sont proches de celles de la mission Venus) sont déjà disponibles sur des sites tests au Mexique et au Maroc. Nous présentons ci-dessous les perspectives de recherche
offertes par Mistigri. Dans le second cas, nous attendons impatiemment les premières données SMOS qui a été lancé en Novembre.

5.3.1. Mistigri

La mission Mistigri est en étude de phase A au CNES. Les spécifications actuelles de cette mission de démonstration devraient aboutir vers un capteur capable d’acquérir des images dans 2 canaux infrarouge thermique et 2 canaux du domaine visible tous les deux jours au minimum et une résolution de 50 à 60 m. Des travaux sont en cours actuellement pour, d’un côté, déterminer une heure de passage optimale du point de vue de l’estimation des flux (par inversion ou assimilation), et, de l’autre, tester ou développer des méthodes d’extrapolation de l’estimation instantanée des flux de surface (flux de chaleur latente) vers l’échelle diurne (évaporation journalière) et interpoler cette dernière entre deux dates à l’aide de données auxiliaires (sorties de modèles, données basse résolution…). Compte tenu de la fréquence attendue de disponibilité de ces images (l’objectif est de disposer d’une image claire par pente) il sera nécessaire de combiner leur information avec celle des satellites basse résolution pour optimiser l’inversion de l’état hydrique des surfaces, fortement variable d’un jour sur l’autre (McCabe and Wood, 2006). Ce travail fait l’objet de la thèse de Jonas Chirouze.

5.3.2. SMOS L4 et l’assimilation à l’échelle du BV / NAFE

Une des principales difficultés lorsque l’on souhaite spatialiser le forçage atmosphérique à l’échelle d’un bassin versant régional, spécialement en Méditerranée où les précipitations convectives localisées sont fréquentes, est l’estimation de la pluie. On peut supposer que l’humidité de surface est très sensible à la pluie tombée depuis le dernier passage du satellite (tous les trois jours). Il est donc intéressant de pouvoir corriger les erreurs d’estimation de la pluie en assimilant les données de SMOS.

6. Conclusions

De nombreux systèmes d’observation à vocation opérationnelle existent en météorologie et en océanographie ; pour les surfaces continentales en revanche, ces systèmes tardent à être mis en place, et ce pour de multiples raisons : contrairement aux océans ou à l’atmosphère, les surfaces continentales sont morcelées en un grand nombre de paysages et cette variété se reflète dans le morcellement de la communauté scientifique qui en étudie le fonctionnement ; l’élaboration de tels systèmes se heurte aussi à la faible disponibilité d’observations fiables sur de nombreuses composantes du cycle hydrologique, notamment les stocks d’eau de la zone non-saturée et de nombreuses nappes phréatiques. La construction de systèmes robustes est pourtant un enjeu majeur de la gestion à plus ou moins long terme des ressources en eau. De nombreux outils et méthodes ont été présentés ici, qui peuvent être utilisés pour construire un système d’observation. Certains modèles sont clairement des outils de référence difficilement utilisables dans un système opérationnel, d’autres au contraire sont suffisamment robustes pour assimiler en routine des
données de télédétection multi-résolutions/multi-spectrales dont la disponibilité quantitative et qualitative ne cesse d’augmenter. Certaines de ces nouvelles observables ont été introduites dans le chapitre précédent, mais ce dernier ne constitue pas une liste exhaustive. A l’heure actuelle, il existe des méthodes utilisatrices de données de télédétection pour contraindre l’estimation d’à peu près toutes les composantes du cycle de l’eau, et les sorties réanalysées des modèles climatiques complètent assez bien ces jeux de données, si bien qu’il est tout à fait possible de proposer un systèmes d’observation pour certaines régions du monde sans même avoir recours à des mesures in-situ. Pour autant, des efforts importants en terme instrumental doivent être développés pour pouvoir évaluer ces approches à l’échelle régionale. Pour ce faire, des mesures intégrées en scintillométrie de large échelle (transects de 10km avec le XLAS ; (KohsieK et al., 2002)), par Distributed Temperature Systems (transects de température de plusieurs km ; (Tyler et al., 2009)) ou en gravimétrie (Llubes et al., 2004) sont des exemples de dispositifs expérimentaux nouveaux permettant de mesurer des variables clefs du bassin versant et notamment du système sous-sol-sol-atmosphère. Compte tenu de la lourdeur de ces dispositifs, l’évaluation des systèmes d’observation reste bien souvent confinée à des campagnes de mesures internationales mobilisant de nombreux observateurs sur une courte durée. Cela exclut de fait l’évaluation du fonctionnement de nombreux compartiments, notamment profonds, dont les cinétiques sont beaucoup plus lentes. La stratégie visant à maintenir un certain nombre d’observatoires régionaux à plus long terme est donc cruciale pour les années à venir, et ce d’autant plus que l’on manque cruellement de longues séries temporelles décrivant l’état de systèmes évoluant au gré des changements environnementaux globaux.
Références

Horton, R., 1933. The role of infiltration in the hydrological cycle. Transactions of the American Geophysical Union, 14: 446-460.

PUBLICATIONS REPRODUITES DANS LE DOCUMENT

